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Abstract 

The geometry of the reciprocal space of cylindrically 
and conically rolled microstructures is described. The 
simpler cylindrical case is first discussed, followed by 
the conical case; in both cases, the observations and 
then the theory are described. The theory is compared 
with observations on chrysotiles, the structural and 
microstructural features of which are briefly recalled. 
The reciprocal space of an infinite 3D crystal consists 
of a lattice of discrete nodes. If a crystalline sheet is 
curled up into a cylindrical scroll (or into concentric 
• cylinders), the corresponding reciprocal space is 
obtained by rotating this set of lattice points about a 
line parallel to the cylinder axis through the origin of 
reciprocal space. "lqae lattice nodes thereby describe 
geometrical loci that, in this simple case, are circles 
in planes perpendicular to the rotation axis. For a 
general orientation of the rotation axis, each node 
produces its own circle. This is the case when the 
fibre has chiral character. For certain symmetrical 
orientations of the axis, 'degeneracy' occurs and two 
(or more) nodes may lead to the same circular locus. 
This is the case for achiral fibres. The curvature often 
causes disorder in the stacking of successive cylin- 
drical sheets - this leads to 'coronae' instead of sharp 
circles - especially in the concentric cylinder case. In 
the diffraction pattern, these produce spots that are 
streaked in the sense away from the axis. In ideal 
cylindrical scrolls, the structures in successive layers, 
as viewed along a radial line c, are shifted relative to 
each other over 2zr times the layer thickness; this may 
lead to superperiods along the normal c to the sheet 
planes if this shift is commensurate with the lattice 
vectors in the sheet plane, i.e. with its translation 
symmetry. The superperiod is clearly related to the 
sheet thickness, which may be more than one bilayer. 
If the •2D crystalline sheet is curled up into a cone, 
the reciprocal-space loci become curves that are 
situated on spheres of constant spatial frequency, 
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called spherical spirals instead of the circles i n  
the cylindrical case. Each reciprocal-lattice node 
describes such a spiral traced out by a node point 
subject to the coupled rotations about the cone axis 
and about the local normal to the cone surface. The 
equations of such spirals are derived and their 
symmetry properties are studied analytically. The 
spiral's shape is a function of the semi-apex angle 
of the cone. For an arbitrary cone angle, these curves 
are not closed; they completely fill a band on the 
surface of the sphere. For certain discrete cone 
angles, which turn out to be essentially determined 
by the condition of good epitaxic fit between 
successive sheets of the cone, the spherical spirals 
become closed curves. The conditions under which 
several node points, belonging to the same spatial 
frequency, trace out the same spherical spiral are 
discussed: i.e. the-conditions for degeneracy are 
formulated. The point symmetries of the sets of 
spherical spirals belonging to the same spatial 
frequency are found to depend on characteristic values 
of the semi-apex angle. All turns  of a conical scroll 
are in fact formed from a single sheet. The structure 
in any given turn is rotated relative to that in the 
adjacent turn over a constant angle, only determined 
by the semi-apex angle. If this rotation angle is 
commensurate with 2zr, superperiods can be formed, 
visible as reinforcements in streaks that are parallel to 
the generators of the cone formed by the set of 
normals to the conical surface. Also, this superperiod 
depends on the thickness of the sheet as well as on its 
rotation symmetry. Diffuse scattering is found to be 
concentrated on a V-shaped hyperboloid-like surface, 
the point of the V being situated on a spherical spiral. 
The intersection of this surface with the Ewald plane 
leads to V-shaped streaks attached by their apexes to 
the spots. They are the homologues of the simple 
streaks in the cylindrical case. Under certain condi- 
tions of beam incidence, the intersection is a 
hyperbole branch. Spot positions have been computed 
for a few characteristic diffraction conditions; they are 
found to represent adequately the observed spot 
patterns. A Mercator-like projection method is 
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proposed to represent the spherical spirals in a plane 
and to construct geometrically the intersections with 
the Ewald plane for different angles of incidence. 
Throughout the paper, the analogies and the differ- 
ences between the diffraction features of cylindrical 
and conical scrolls are emphasized and illustrated by 
observations on chrysotile. 

1. Introduction 

The study of the properties of tubular microstructures 
such as those of carbon and molybdenum disulfide 
nanotubes and their derivatives are of great current 
interest for chemists, physicists and materials scientists 
(e.g. Margulis, Dluzewski, Feldman & Tenne, 1996; 
Iijima, 1991; Iijima & Ichihashi, 1992; Iijima & 
Ajayan, 1992; Zhang, Zhang, Amelinckx, Van 
Tendeloo & Van Landuyt, 1994; Amelinckx et al., 
1994; Amelinckx, Benaerts, Zhang, Van Tendeloo & 
Van Landuyt, 1995; Liu & Cowley, 1994a,b; Baker, 
1989; Tibbets, 1984). Apart from their theoretical 
interest, these unusual nanostructures have potential 
technological applications (Ebbesen, 1994; Rodriguez, 
1993). High-resolution electron microscopy (HRTEM) 
and selected-area electron diffraction (SAED) proved to 
be the most useful techniques to unravel the 
microstructures of these materials (Cullen, Boothroyd 
& Humphreys, 1994; Williams & Hyde, 1988). 

It is less well known among physicists that some 
minerals have been known since the early 1950's to 
display very similar structures. Serpentine minerals, 
among them chrysotiles, are the best documented of 
these naturally occurring materials [for a comprehen- 
sive review on serpentines, see Bailey (1969, 
1988a,b,c)]. The cylindrical structure of chrysotiles 
has been studied in depth by means of X-ray diffraction 
in a series of papers by Whittaker (1952, 1953, 1954, 
1955a,b,c, 1956, 1957) and by Jagodzinski & Kunze 
(1954a,b) and, more recently, using HRTEM and 
SAED by Yada (Yada, 1967, 1971, 1979; Yada & 
Iishi, 1977). 

Chrysotiles (lato sensu) offer a wide variety of 
microstructures ranging from perfectly cylindrical to 
helical (chiral) and conical wrappings, and they are 
therefore interesting test objects for exploring the 
diffraction effects produced by wound tubules and 
comparing these with high-resolution images. We 
have already reported on the various wrapping 
modes of chrysotiles (Devouard, 1996) and proposed 
a qualitative model for the nucleation and growth of 
such fibres. 

In this paper, we develop an interpretation scheme 
for the geometry of the diffraction patterns of such 
microstructures and illustrate this by means of observa- 
tions on various chrysotile specimens. In particular, we 
report in detail on conically wound synthetic chrysotile 
fibres. 

2. Structural considerations 

2.1. Crystal structures (Whittaker, 1956; Mellini, 1982; 
Mellini & Zanazzi, 1987) 

The structure of the serpentine minerals lizardite, 
chrysotiles and antigorite with ideal composition 
Mg3(Si2Os)(OH)4 are closely related, the essential 
difference being the wrapping mode rather than the 
crystal structure (Fig. 1). 

The three structures and their microstructural vari- 
ants can be described in terms of strongly intralayer- 
bonded bilayers (1:1 layers) kept together by weaker 
interlayer hydrogen bonds. The idealized polar tetra- 
hedral layer formed by hexagonal rings of corner- 
sharing SiO4 tetrahedra has hexagonal symmetry. The 
close-packed 'brucite' [Mg(OH)2] layer has only 
threefold symmetry. The bilayer resulting from the 
juxtaposition of the two types of layer therefore has only 
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Fig. l. The two layers of the lizardite structure, indicated by arrows in 
the layer sequence 

... [OH-Mg-(OH, O)-Si-OIOH-Mg-(OH, O)-Si-O[... 

1"1" 

are shown as projected on the (001) plane. The unit mesh is outlined 
and the succession of six (010) layers along the [010] direction 
emphasized. In the normal stacking, the centre of the ring of SiO 4 

tetrahedra project in the centre of a triangle of OH ions. Different 
possible dissociation schemes are indicated. An energy barrier 
occurs during the motion from A to A' of an O ion. 
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threefold symmetry. The intralayer bonding is such that 
the apical oxygens of the SiO 4 sheet are common to one 
of the O - - ( O - - H )  layers of the 'brucite'  lamella. It is 
customary to describe this bilayer with respect to a 
centred rectangular unit mesh with a = 0 . 5 2  and 
b _~ 0.92 nm with b/a = 31/2 as a result of the pseudo- 
hexagonal symmetry. Alternatively, a hexagonal mesh 
with a _~ 0.52 nm could be chosen. We will often make 
the latter choice since this induces very little error in the 
lattice parameters but allows one to apply the theory 
also to other hexagonal layer structures since the 
phenomena to be discussed mainly depend on the lattice 
rather than on details of the structure. 

The lizardite structure (Mellini, 1982; Zussman, 
Brindley & Comer, 1957), which we will consider as a 
'reference'  structure, results from the vertical stacking 
of such bilayers, with a thickness t = c = 0.7 nm, all 
with the same .polarity, i.e. with all SiO 4 tetrahedra 
having vertices pointing in the same direction. How- 
ever, many stacking variants are known (Bailey, 1969, 
1988a,b,c; Mellini & Zanazzi, 1987); they may belong 
to orthorhombic, monoclinic, rhombohedral or hexag- 
onal space groups. The bonding between successive 
bilayers is realized by hydrogen bonds. The building 
bilayer or 1:1 layer can be described with reference to a 
C-centred orthorhombic unit cell with lattice parameters 
a = 0.52, b = 0.92, c = 0.7 nm, the c parameter being 
equal to the bilayer thickness. 

It is generally accepted that the curling up is a 
consequence of the misfit (3-5%) between the free 
tetrahedral Si205 layers (a = 0.516 nm) and the octahe- 
dral brucite layers (a = 0.539 nm), the latter having a 
larger unit mesh. The summits of the SiO 4 tetrahedra 
point towards the closest 'brucite'  layer, the latter 
forming the convex curvature side of the bilayer. 

Although the lattice parameters of the two layers are 
different along all directions in the layer plane, the 
curved structure will adopt a single axis of curvature, 
which is usually controlled by the structure of the layer. 
The most common variety of chrysotile is wound 
around the X axis (Fig. 1) and we will refer to this 
variety as normal chrysotile. Another variety,  called 
parachrysotile, is wound around the Y axis (Fig. 1). 
Several polytypic modifications of normal chrysotile are 
known, including ones with an orthorhombic local cell, 
formally called orthochrysotile, and ones with a 
monoclinic local cell, formally called clinochrysotile. 
These polytypes differ by shifts of the successive 
bilayers along X, as well as by their orientation. 
Polytypic modifications of parachrysotile can occur but 
are not well documents [see Bailey (1969, 1988a,b,c) 
for a review of cylindrical polytypes]. We will use the 
terms ortho- and clinochrysotile because they do not 
assume a given stacking sequence (only its symmetry), 
which is very convenient for electron diffraction, which 
cannot easily distinguish the actual polytypes. In 
addition t o  the X and Y axes, the scroll or cylinder 

axis can also adopt a more general direction. Helically 
wound (chiral) cylindrical tubes now result (Fig. 2c). 

2.2. Wrapping models 

Since the circumferences of two successive cylinders 
in a tubule consisting of concentric circular cylinders 
differ by 2n't (t = lamella thickness, t = nc, n = 
integer), it is clear that the relative positions of two 
successive bilayers must change either continuously or 
in discrete steps. The same applies to successive turns in 
a scroll. It turns out that both cases occur. 

If the change is continuous, the tubule remains 
circular in cross section and no well defined layer 
stackings, extending over appreciable volumes, occur. 

On the other hand, the change in circumference can 
be formally accommodated by the insertion of extra 
material as half-planes parallel to (010), formally 
associated with edge-type dislocations parallel to the 
tube axis (Jagodzinski & Kunze, 1954a,b). The num- 
ber of unit cells to be inserted per turn is independent 
of the radius of the tubule and given by 
2rrc/b = 4.98 _~ 5 (t = c). The strain energy associated 
with the insertion of 'wedges'  or 'half-planes' of extra 
material will be minimized if the extra material is 
distributed over as many half-planes as compatible with 
the structure and if, moreover, the separation of these 
half-planes is uniform along the periphery. One can 
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Fig. 2. Different wrapping modes of layers. (a) Chiral cylindrical 
scroll. (b) Conically wound scroll. (c) Chiral concentric cylinders. 
(d) Cylindrically wound achiral scroll. 
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distinguish six (010)-type atomic layers in one reference 
unit cell, which means that supplementary half-planes 
with a thickness of ~b are the obvious units of extra 
material that can be considered (Fig. 1, top). 

In terms of dislocation language, one can associate 
each half-plane with a dislocation parallel to [100] and 
having a Burgers vector with an edge component 
b e = I[010]. Formally, one would thus need in each 
turn 6 x 5 = 30 edge dislocations. The stable con- 
figuration of parallel edge dislocations with the same 
Burgers vector is a symmetrical tilt boundary of which 
the tilt angle 0 is given by 2 sin 0/2 = be~D, where b e is 
the edge component of the Burgers vector of the 
dislocations and D their separation. In the present case, 
one has D =  c and hence 0_~ arcsin(b/6c)= 12 °, 
which is consistent with the presence of 30 radial 
dislocation walls. According to this model, the tubule 
will thus be divided into 30 wedge-shaped sectors 
containing planar layers and separated by tilt boundaries 
in radial planes consisting of partial dislocations with 
b e = ~ [010]; such tubules do exist and are referred to as 
'polygonal serpentine'. 

It should be noted that the use of discrete dislocation 
language is in fact questionable since the separation D 
of the dislocations is so small that the dislocation cores 
(of which the separation is c) overlap; the sector walls 
have, in fact, more the character of grain boundaries. 
This is the reason why individual dislocations are not 
observed in the walls (Fig. 3). Formally, one can 
nevertheless continue to use dislocation concepts and 
relate the proposed partial dislocations to the atomic 
structure of serpentine. 

The contact layers between successive bilayered 1:1 
lamellae are represented schematically in Fig. 1. The 
large circles represent the limiting layer of OH ions 
of the close-packed 'brucite' lamella; the small circles 
are O ions limiting the Si205 lamella. The translation 
symmetry of the contact configuration, as suggested 

Fig. 3. High-resolution image parallel to the fibre axis of a polygonal 
serpentine. A change in stacking, which can be described as a 
homogeneous shear, occurs at each sector boundary. Note that a 
stacking fault (indicated by an arrow) is transmitted through the 
sector boundaries. 

by the simplest IT stacking, is given by the unit mesh 
outlined in Fig. 1 ( a=0 .52 ,  b=0 .92nm) :  it is 
C-centered orthorhombic, quasi-hexagonal. A 
particular stacking of the two lamellae can be 
characterized by the positions of the centres C of 
the S i O  4 hexagonal rings, marked by crosses in Fig. 
1. The bonding (hydrogen bonds) between these two 
layers is assumed to be the weakest and shear 
associated with disorder may thus take place between 
these layers. In describing subsequently imaginary 
shear processes, we assume the OH layers to remain 
stationary whilst the O layer moves. 

When considering only the two layers represented 
in Fig. 1, all configurations in which the crosses 
occupy the centres of a triangle of OH ions are 
symmetry related and energetically equivalent. The 
difference in energy between different stacking 
modes obeying these rules must be very small. A 
succession of the relative positions realized on 
shearing the two layers can now be specified 
unambiguously by giving the path followed by a 
point such as C along the centres of triangles of OH 
ions. Possible glide paths using such low-energy 
intermediate positions are indicated in Fig. 1. The 
bending axis (i.e. the fibre axis) is assumed to be 
perpendicular to the resultant shear direction. The 
shear along [010] is likely to take place in six partial 
steps according to the scheme 

[010] = {~[ilO] +1[110]} x 3. (la) 

In each of these steps, an energy barrier has to be 
overcome since two of the six O ions in an SiO4 ring 
have to 'pass over' OH ions (see, for instance, the 
motion A ~ A' in Fig. 1). 

Since the (001) plane is centred, ½ [110] is a symmetry 
translation and only three steps, 

-1[110] x 3, (lb) 6 

are required to reach a crystallographically equivalent 
position along [110]. Again, similar energy barriers 
have to be overcome; moreover, faults with respect to 
the 1T structure in which the central cross of a ring 
occupies an OH site are present. However, this should 
be a low-energy fault. 

The energy barrier mentioned above can be avoided 
for shear along [010] if the dissociation takes place in 
three steps only: 

[0101=½10101×3 (2) 

[marked by (c) in Fig. 1]. The O ions now 'pass by' 
the OH ions instead of 'passing over' the top. 
Reasoning in terms of dislocations, one can see that 
energy may be gained by dissociation into six partial 
steps as compared with the three-step process but only 
at the expense of having to overcome an energy 
barrier. 



854 SERPENTINE ROLLED MICROSTRUCTURES 

Subtle kinetic reasons related to the growth 
conditions may therefore favour one or other 
dissociation scheme, especially since hydrogen bonds 
O . . .  HO have to be broken and remade during a real 
shear process. Similar 'dissociation' schemes have 
been discussed by Devouard & Baronnet, 1996). 

Homogeneous shear according to scheme (2) (Fig. 
lc) gives rise to an orientation difference of 24 ° across 
sector boundaries and thus leads to 15-sector polygonal 
fibres. 

Since the shear process is a consequence of the 
stresses associated with the bending, one would expect a 
preference for scheme (lb) in parachrysotile and for 
schemes (la) and (2) in orthochrysotile. 

In the case of scheme (lb), the orientation change 0 
across a sector boundary would become 0 =  
(b/3 x 31/2)/c = 14-15 °, i.e. the fibre would contain 
24 sectors when polygonized. This suggests that, 
whereas polygonal chrysotile-type serpentines may 
contain either 15 or 30 sectors, polygonal parachrysotile 
would contain 24 sectors. 

Next to the simple schemes considered so far, the 
homogeneous shear may take place according to 
more complicated glide paths. This would be the 
case in chiral tubes where the fibre axis and hence 
also the shear stresses have a complicated direction. 

The fourfold glide path for 1 [110] represented in Fig. 
l(d) allows avoidance of the stacking faults occurring in 
scheme (lb) and-could produce the same total 
curvature, although two different kinds of sector wall 
would alternate. 

The structures in adjacent sectors are clearly 
continuous along c layer planes (Fig. 3) and the 
high-resolution contrast suggests that the polarity is 
conserved across the sector walls. The change in 
stacking requires the passage of one such partial 
dislocation between each successive pair of bilayers. 
Such a process causes a homogeneous shear over an 
angle 0 = arctan(~b/c) "~ 12 ° {or 0 = arctan(½b/c) 
= 24°}, which thus produces the required orientation 
difference. 

The high-resolution images (Fig. 3) along [010] are 
compatible with both types of dissociation since they 
only reveal the homogeneous shear. 

Even if the stacking changes continuously, the 
same stacking pattern will nevertheless repeat after 
an azimuth increase of 72 ° (i.e. 6 x 12 ° or 3 x 24°). 
Thus, if a given reference crystallographic stacking 
occurs along a certain radial direction, this will 
repeat five times along the periphery, i.e. the fibre 
has fivefold rotation symmetry (Baronnet & Mellini, 
1992; Cressley & Whittaker, 1993; Baronnet, Mellini 
& Devouard, 1994). In view of the low stacking- 
fault energy, the stacking will mostly be complicated 
or even random along any radial direction unless the 
fibre is a scroll rather than a set of concentric 
cylinders. 

3. Experimental 

3.1. Materials 

We discuss observations on three types of sample: 
two natural ones and a synthetic one. The emphasis is 
on the interpretation of the electron diffraction patterns 
obtained from individual fibres of such samples. In 
particular, the diffraction features associated V;,l'th 
conically wound fibres will be discussed in detail. The 
samples are described by Devouard (1996). 

3.2. Specimen preparation 

Samples suitable for transmission electron micros- 
copy were made from the natural samples by ion-beam 
thinning of slices cut perpendicular to the fibre bundles. 
Such samples were suitable for observations with the 
electron beam along the fibre axis. 

Since the synthetic sample consisted of separate 
fibres, specimens were prepared by the evaporation of a 
drop of distilled water with fibres in suspension on a 
copper grid covered with a holey carbon f i l l .  The latter 
specimens were suitable for observations with the 
electron beam perpendicular to the fibre axis. Useable 
specimens were invariably rather thick, the thinner 
parts being almost instantly damaged by irradiation. 
Diffraction patterns and the corresponding images were 
obtained partly with a JEM 2000 microscope operated at 
200 kV (at the CRMC2-CNRS facility, Marseille) and 
partly with a JEOL 4000 and a Philips CM-20 
microscope, operated at 400 and 200 kV, respectively 
(at EMAT, Antwerp). 

4. Description of observed diffraction patterns 

In this section, we limit ourselves to a description of the 
main diffraction effects; a more rigorous formulation 
and interpretation follow. 

4.1. Zone parallel to the fibre axis 

Along the [100] zone, i.e. parallel to the axis of a 
cylindrical orthochrysotile fibre, the diffraction pattern 
consists of circular loci centred on the origin of 
reciprocal space, resembling in many respects a 
Debye-Scherrer powder pattern. Unfortunately, no 
diffraction patterns could be obtained from circular 
fibres owing to their small size. However, the diffrac- 
tion patterns in this zone axis can be simulated 
(Whittaker, 1955b; Devouard & Baronnet, 1996) or 
investigated by optical or numerical Fourier transfor- 
mation of high-resolution images (Devouard & Bar- 
onnet, 1996). Polygonized serpentines have larger sizes 
and did produce [100] zone patterns. This zone reveals 
the polygonal character of the fibre, if present, as for 
instance in Fig. 4. It is clear that the circles 
corresponding to 001 reflections ( l -  1 . . . . .  6) exhibit 
30 reinforcements corresponding to the 30 sectors of the 
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polygonal cylindrical fibre. AlL reinforcements in 
successive 'circles '  are aligned along radial directions 
perpendicular to the facets of  the polygonal fibre. 

The slightly polygonal circles corresponding to 0k0 
reflections (k = 2, 4) are diffuse in that they are in fact 
formed by streaks tangent to these 'circles ' .  The streaks 
are a consequence of the disorder in the stacking of 
(001) layers. Such disorder is not revealed in the 001 
reflections but causes streaking of Okl reflections. 
Whereas the 020 and 040 circles are formed by tangent 
streaks, the 060 circle consists of  unstreaked spots. This 
suggests that the defects responsible for the streaks are 
faults on (001) with a displacement vector of  the type 
R = -~[xl0] with respect to the reference structure. The 
dot product g .  R is then fractional except for g = [0k0], 
k = m u l t i p l e  of  6. Faults with a displacement 
vector R are not revealed by reflections with a 
diffraction vector g such that g .  R is an integer. It is 
also consistent with the fact that k has to be even and at 
the same time a multiple of  three to exhibit sharp Okl 
spots. The latter condition arises because the MgOOH 
octahedra sublattice remains invariant under displace- 
ments along [010] associated with low-energy stacking 
faults. 

No diffraction patterns of conical fibres along the 
fibre axis have been obtained so far. 

4.2. Quasi-normal incidence 

4.2.1. The OOl reflections. Observations on cylindri- 
cally wound fibres have been described in detail for 
carbon nanotubes (Zhang et al., 1994); they are similar 
in cylindrical serpentines. 

In the diffraction pattern under close to normal 
incidence, the main intense spots produced by conical 
fibres consist of  two equispaced linear arrays of 
relatively sharp spots, intersecting at the origin under 
an angle equal to the projected apex angle of the cone. 
The configuration of the two arrays has only one line of 
symmetry, the two arrays being shifted in opposite 
sense along their length with respect to the origin. The 
line of symmetry is parallel to the fibre axis. This 
surprising phenomenon was noted earlier (Yada, 1967, 
1971) and correctly attributed to 'refraction' of the 
electrons that traverse the specimen under grazing 
incidence close to the fibre surfaces. For a cylindrical 
specimen, refraction only gives rise to spreading or 
possibly doubling of the 00l reflections along c*, but in 

• f • 

1 
b 

# 

6 

IP 

• . ,h I I I  I B ~ , ~  . ~ J " 

• I 

b 

l 

I f  

/ 

,w 

*,p  

Fig. 4. Diffraction pattern along the [100]0 zone fibre axis of a 30- 
sector polygonal serpentine fibre. The circles of spots are split along 
radial directions (possibly due to refraction). The 020 and 040 
circles are formed by tangent streaks along c* where the 060 circle 
consists of sharp spots. 

Fig. 5. Diffraction pattern of a conical fibre. The beam is incident 
roughly perpendicular to the fibre axis. The cone angle is 2~ 0 = 19- 
20 ° . Note the presence of V-shaped streaks attached to all spots 
(except the 001 spots) and of broad curved streaks connecting two 
spots on the same circle. Note the presence of the superstructure 
spots shown magnified on the inset. 
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a conical fibre it leads to two differently oriented linear 
arrays, each perpendicular to one of the projections of 
the 'walls' (see Fig. 9a). 

4.2.2. Superperiod reflections: streaks. A second 
striking feature is the presence of closely spaced spot 
arrays along lines parallel to the two c* directions and 
passing through hkl diffraction spots. These arrays of 
spots suggest the presence of a superperiod along the c* 
direction. All spots, except the sharp 00/-type spot 
sequences, acquire V-shaped streaks extending away 
from the fibre axis along directions parallel to the 00l 
rows of spots. The streaks are sometimes rather 
continuous with reinforcements but they often exhibit 
sharp equidistant spots. Some of the streaks have the 
shape of one branch of a hyperbola having the straight 
streaks as asymptotes. 

4.2.3. The hkl reflections. Most striking is the 
absence of a clear geometrical pattern for most zone 
axes; in particular, the spots do not form a regular 
hexagon. There is only a centre of symmetry for the 
configuration of this type of reflection. In certain zone 
patterns, pairs of spots on the same circle are connected 
by wide curved streaks (Fig. 5). Most diffraction 
patterns contain only a small number of spots for each 
spatial frequency. We shall see that this is a conse- 
quence of the synnnetry of the arrangement of 
reciprocal-space loci for particular cone angles. The 
density of spots along a given circle depends sensitively 
on the semi-apex angle ~b 0 as deduced from the angle 

enclosed by 001 rows, as for instance in Fig. 6 where 
4,---5 °. 

5. Methods to describe the geometry of diffraction 
space of rolled microstructures 

5.1. Spherical coordinates, cylindrical projection 

A discussion of the diffraction space of rolled 
textures such as cylindrically or conically wound 
layered microstruCtures can conveniently be based on 
a spherical coordinate reference system because all 
reciprocal-space nodes referring to a family of lattice 
planes with the same local interplanar distance are 
situated on a sphere with radius R = ghU = 1/dhu, 
whatever the geometry of the rolled microstructure. 

The coordinates of a point on the sphere will be called 
o~ (the latitude) and ~ (the azimuth or longitude) (Fig. 
7b), and R is the radius of the sphere. A reciprocal- 
lattice node 0P, o0 will become stretched out over a line 
locus situated on the sphere. The shape of this locus 
with equation FOP, a) = 0 depends on the geometry and 
on the symmetry of the wrapping and, as we shall see, it 
may become a complex three-dimensional curve such as 
a spherical spiral. In general, each node with a given 
dhk I produces a separate curve on the sphere with radius 
ghkl, leading to a complex geometry. Families of nodes 
with a different dh~ will produce similarly complex 
curves on a concentric sphere with a different radius. 

Complex curves on a sphere can subsequently be 
represented in the plane by the use of a Mercator-type 
cylindrical projection (Fig. 8a). A point on the spherical 
surface is therefore projected onto the surface of a 
circular cylinder with generators parallel to the fibre 
axis, which is tangent to the sphere along the equator. 
Unrolling this cylinder produces a planar representa- 
tion. The latitude c~ is plotted either as sin ~t (in Fig. 8b) 
or as o~ itself vertically along the y axis and the longitude 
~p is plotted along the horizontal axis in the manner 
used for geographical maps. However, in the present 
application to spherical spirals, lp may extend over 
several turns. It is therefore meaningful to consider the 
cylinder as a scroll so that the function FOP, c0 = 0 
remains single valued. The latitudes ot are restricted to 
the interval -7r /2  < t~ < +~r/2. 

Fig. 6. Electron diffraction pattern of a conical fibre with a cone angle 
2~ 0 = 10 °. Note the large concentration of streaked spots along the 
successive circles of constant spatial frequency, consistent with the 
small cone angle. 

5.2. Examples of application to cylindrical wrappings 

5.2.1. Geometrical description of the patterns. The 
method will first be illustrated by the simplest cases of 
interest here. We shall limit ourselves to layers with a 
hexagonal unit mesh in the layer planes, which is the 
case for graphite, chrysotile etc. We discuss only the 
pattern forme_d by the nodes of the first hexagon (i. e. of 
the type 1010 in hexagonal notation). A similar 
discussion is applicable to the nodes of the second 
hexagon (i.e. of 1120 type) and higher-order hexagons. 
We also limit ourselves to the geometry of the patterns, 
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since in electron diffraction spot intensities are dyna- 
mical and depend on many parameters. 

The 001 loci form a singular case because they are not 
sensitive to one-dimensional stacking (or orientational) 
disorder along the c direction. These loci remain sharp 
circles in planes normal to the fibre axis in all 
considered cases. 

The parameter ~p only plays a role if the diffraction 
space no longer has cylindrical symmetry, as in the case 
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Fig. 7. Construction of diffraction loci. (a) The diffraction locus 
corresponding to a reciprocal-lattice node P, for a conical fibre, is 
obtained by the coupled rotation of the plane rr about the axis a~ 
parallel to the fibre axis (rotation angle described by ¢)  and of the 
node configuration in rr about the axis o.2 perpendicular to Jr 
(described by X); ¢0 is the semi-apex angle of the cone. Two 
projections are shown. (b) Reference system (@,a) used in 
describing diffraction Space; ¢ is the azimuth and a the latitude; 
~o is the semi-apex angle of the cone. The angle X refers to the point 
P along the large circle. 

of conically wound scrolls, but in most cases the 
cylinder symmetry is conserved and two numbers are 
sufficient to designate a circular locus: the radius R of 
the sphere, which is equal to the length of the diffraction 
vector I ghk/I = ghla, and the latitude ot on that sphere, the 
equator being perpendicular to the fibre axis. 

As a first example, we discuss orthochrysotile (Fig. 
9a); the fibre axis is along [100], which is also a twofold 
axis for the lattice (not for the structure!) and the 
situation is degenerate, i.e. one circle corresponds to 
two nodes. The main circular loci (and points) are now 
given by 

Otll o = 6 0 ° ;  

Otll 0 = -60° ;  

al l l  = O; 

Otoo I = O; 

Oto/,. o = O; 

R = g110, g220 . . . .  

R = gllo, g220 . . . .  

R = gl l0 ,  . .  • 

R = g00t (l = 4-1, 4-2 . . . .  ) 

R = g0~ (k = 4-2, 4-4 . . . .  ), 

where ghkl is given by the expression 

(: ............ 1 ............ ), 
4- 

~' ~ - ~ o l  ~o 11 

%%%. %% / I . 
'~. % / 

! 

(a) 

sinoc 90°~° t  

9 ° 
q% 2= 4n 6re 

(b) 
Fig. 8. (a) Mercator-like cylindrical projection used to represent 

spherical spiral loci in a plane. The point I;', on the sphere at 0P, ~) 
projects in the point Pc 0P, sin a) on the cylindrical scroll tangent to 
the sphere. (b) When unrolling the cylindrical scroll, the projection 
of the spherical spiral is a sinusoid. 
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R = ghkl = [ (ha* )  2 .qt_ (kb*)  2 _~_ (lc*)2]1/2. (3)  

Apart from 001, we do not consider here loci with 
l ~ 0 .  

Intersections with the Ewald plane can easily be 
obtained. If the incident beam is parallel to the fibre 
axis, the loci with ct = 0 will be excited. If the incident 
beam is perpendicular to the fibre axis, the Ewald plane 
intersects along a plane ~p = constant. In the cases 
considered as yet, the intersection pattern is indepen- 
dent of ¢.  

As a second example, we discuss parachrysotile (Fig. 
9b), for which the fibre axis is [010]; the unit mesh in 
theplanes tangent to the cylinder a = 0.52, b = 0.92 nm 
such that arctan(a/b)  ~_ 30 °. The fibre axis is a twofold 
symmetry axis of the lattice. The situation is again said 
to be 'degenerate' since symmetry-related pairs of 
reciprocal-lattice nodes lead to only one circle. The 
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(e) 
Fig. 9. Schematic representation of different t y p e s  of fibre diffraction 

pattern. The wrapped layers are referred to a hexagonal unit mesh, 
indicated schematically. In all cases, the fibre axis is vertical. Only 
spots of the first order, i.e. of the type 10i0 in the hexagonal 
description (or 110 and 020 in the orthorhombic _description), 
are indicated. (a) Cylindrical fibre: axis parallel to [1010] (or [001] 
- orthochrysotile type). (b) Cylindrical fibre: axis parallel to [1120] 
(or [010] - parachrysotile type). (c) Helically wound cylindrical 
fibre. (d) Clinochrysotile type. Note the splitting of the 200 
reflections owing to the monoclinic symmetry. (e) Conically wound 
cylindrical fibre. Note the splitting of the [00/] directions. The 
streaked spots are located on the 110 circle. The full dots indicate 
the actual spot positions 001 after refraction. 

main features of diffraction space are then given by the 
following circles characterized by (or, R): 

0~110 - -  30°; 

otlt o = -30°;  

OelZ 0 - -  90° ;  

0~110 = --90°; 

Otoo l = O; 

Oto~ = O; 

R = gzlo,  g220 . . . .  

R = g110, g220 . . . .  

R = gno . . . .  

g = gllO, . .  • 

R -- gooz (l = 4-1,-t-2 . . . .  ) 

R = g0k0 (k = 4-2, 4-4 . . . .  ). 

The circles in c~ =-t-90 ° are clearly degenerated into 
points. The diffuse character of some of these loci will 
be discussed later. 

In chiral cylindrical tubules or scrolls, the degeneracy 
is lifted and single circles associated with pairs of 
symmetry-related nodes split into two parallel circles on 
the same sphere but with ot values given by ot + 77 and 
ot - r/, where ot is the latitude in the achiral case and 2r/ 
is the chiral angle. Note that no splitting takes place for 
circles generated by nodes corresponding to the. set of 
planes tangent to the cylinder (Fig. 9c). 

Clinochrysotile is monoclinic with a/3 angle close to 
90 ° (mostly 93 °) (Fig. 9d). The c* and b* directions are 
still perpendicular to the fibre axis but a* is no longer 
parallel to it. As a result, the nodes hOl describe two 
concentric circular loci. The main set of circuJar loci is 
now given by 

hOl 

[gh0/I - -  [ (ha* )  2 + ( /c*)  2 + 2h/a'c* cos fl]z/2 

OlhO l = arctan[(ha* sin/3 + l c*) / ( -ha*  cos/3 +/c*)] 

(h even) 

hkO 

Ig~l  = [(ha*) 2 + (kb*)2] 1/2 

Othk o = arctan(ha*/kb*) 

001 

Ig0o/I = lc* 

Og001 = 0 

OkO 

Ig, ot.ol = kb* (k even) 

~OkO = O. 

In cylindrical fibres, the c-layer stacking often exhibits 
appreciable disorder and therefore the hk0 and 0k0 spots 
are mostly streaked along the c* direction, i.e. tangent 
to the circular loci. The 0k0 and hk0 circular loci can 
therefore be described as intensity discs that are sharply 
limited inwards by the described circles but fade out 
outwards (Amelinckx et al. ,  1994, 1995; Liu & 
Cowley, 1994a,b; Baker, 1989; Tibbets, 1984). Inter- 
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section with a plane ¢, = constant (Ewald's sphere for 
normal incidence) then leads to diffraction spots 
streaked towards high spatial frequencies but sharply 
limited inwards. These discs or coronae can be obtained 
by the rotation about the fibre axis of a diffuse line 
parallel to c* through hk0 and which is tangent to the 
hk0 loci. In nodes situated on the projection of the fibre 
axis, the two line segments join into a single diffuse line 
parallel to c*, the inner circle being shrunk to a point 
(Fig. 9b). 

In the diffraction pattern of cylindrical fibres, the 
reflections of type hOl and hk0 are situated in positions 
that are related by a line of symmetry parallel to the 
projection of the fibre axis, the overall planar symmetry 
of the pattern being ram2. This still applies if the fibre 
axis is not normal to the incident beam and even if the 
fibre is chiral (Zhang et al., 1994; Chisholm, 1988). 
This is no longer the case in conical scrolls, as in Fig. 
10, which will be discussed in more detail below. 

5.2.2. Observations on cylindrical chrysotile. The 
theoretical patterns of Fig. 9 will now be compared with 
experimental patterns; first for cylindrical fibres. 

The diffraction pattern reproduced in Fig. 11 can be 
compared with the predicted pattern of Fig. 9(d); it 

shows that the fibre is clinochrysotile with a /] angle 
close to 93 ° . 

Fig. 12 shows a single-fibre chrysotile diffraction 
pattern as viewed along the direction normal to the fibre 
axis. The repeat distance along the fibre axis, which is 
vertical in Fig. 12, is b*, sho~ing that the fibre is 
parachrysotile. 

A synthetic chrysotile fibre pattern, the incident beam 
being quasi-normal to the fibre axis, is reproduced in 
Fig. 13. The horizontal sequence of sharp 00l reflec- 
tions shows that the fibre axis is vertical in Fig. 13. 
Doubling of spots other than 001 shows that the fibre has 
chiral character, the chiral angle being close to 7.5 °. 
Note the streaking parallel to c* of such reflections. 

In Fig. 13, the streaks perpendicular to the fibre axis 
exhibit striking reinforcements with a period of ½c* in 
positions determined by basic spots of the second and 
fourth hexagons. Since the basic spots that determine 
these positions are not separated by a distance that is 
simply related to c*, two interleaved sequences with a 
spacing ½c* result. This observation suggests that this 
fibre has a layer spacing of 2c (--, 14 A). Moreover, the 
fibre was presumably a scroll since the stacking is 
repeated with a rather well defined period of 2c. The 

Fig. 10. Electron diffraction pattern of a synthetic conical fibre. Note 
the lack of ram2 symmetry. Note also the V-shaped streaks, some of 
which exhibit sharp reinforcements corresponding to a period 6c. 
The cone angle is 200 --~ 19-20 °. 

Fig. 11. Diffraction pattern of clinochrysotile under quasi-normal 
incidence of the beam. 
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pattern is thus consistent with the wrapping of a two- 
layer chiral scroll. 

5.3. EwaM plane in spherical coordinates 

The Ewald plane intersects the projection sphere 
along a large circle (Ewald circle). If  y is the tilt angle, 
i.e. the angle enclosed by the beam direction and the 
plane normal to the fibre axis, the following relation has 
to be satisfied along the Ewald circle (in the spherical 
triangle PQR, Fig. 14): 

t a n a  = co tan  y s i n ( ~ -  lpo,E ). (4) 

This is in a sense the equation in spherical coordinates 
of  the Ewald circle. If  the origin of the azimuth is 
chosen such that ~, - ~'0.E = 0 for a = 0, this reduces to 

tan a = cotan X sin ~. (5) 

This choice is always possible in the case where 
diffraction space has cylindrical symmetry since then 
the intersections do not depend on ¢,. In cases where a 
depends on ~r, the choice of origin must be the same for 
diffraction space and for the Ewald circle and in general 
we will have ¢'0.E # 0 if  the Ewald plane is not in a 
symmetry orientation. 

The quantity of direct interest for comparison with 
the observed diffraction pattern is the angle XE, which is 
measured directly on the diffraction pattern (Fig. 14). 
This angle XE is related to a by the relation 

sin a = sin XE cos y. (6) 

If  the beam is incident along the fibre axis, y = 90 ° and 
hence sin a = 0. The diffraction spots are then found by 
putting a = 0 since they are the intersection points of 
diffraction space with the equatorial plane. If the beam 

Fig. 12. Diffraction pattern of  parachrysotile fibre under normal 
incidence of  the beam. 

Fig. 13. Diffraction pattern of  chiral cylindrical tubule of synthetic 
chrysotile fibre. The chiral angle rl --- 7.5 °. 
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Fig. 14. Reference system used to describe the Ewald plane in 
spberical coordinates; y is the angle of incidence of the beam: y = 0 
for normal incidence, y = 900 for incidence along the fibre aNs. 
The parameters t' and ~'0.~ determine the Ewald plane. 
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is incident along a normal to the fibre axis, y = 0 and 
one has c~ n = Xn.e. The angular positions X,,.e of the 
diffraction spots are then the o~. For an arbitrary 
incidence, (6) gives the observed angle X~.e in terms of 
the angles a,, defining the loci. 

The two intersection points of a given circular locus 
with the Ewald plane will coincide for a critical 
inclination go, whereby the Ewald plane is tangent to 
the cone corresponding with the given locus ot n, i.e. for 
Yc = zr/2 - ~',,. 

5.4. The effect of polygonization on the reciprocal 
space of cylindrical fibres 

It was shown that cylindrical serpentine fibres can 
have a polygonal cross section (Middleton & 
Whittaker, 1976), i.e. they consist of a number (15 
or 30) of wedge-shaped sectors separated by planar 
radial boundaries. Within the sectors, the c layers are 
planar and parallel to the facets, whereas a localized 
homogeneous shear, with a component ~b (or ~b) 
parallel to b, takes place across the boundaries, 
changing the stacking in successive sectors since the 
shear vector is not a symmetry translation. 

The effect of polygonization on diffraction space is to 
cause reinforcements in the Okl and 001 circles along 
directions normal to the facets of the fibres. Since the 
stacking of bilayers within the sectors often exhibits 
disorder, streaks parallel to c* are caused through Okl 
positions ( k = 2 , 4 , 6  . . . .  ). All these features are 
revealed in the [100] zone pattern of Fig. 4. The dotted 
circles at ot = 0 (in the equatorial plane) are visible 
because, owing to the thin nature of the specimen, they 
are in fact circular bands with a certain width normal to 
the foil, i.e. parallel to the fibre axis; relrods are 
associated with the reinforcements. 

Polygonization has no striking effects on patterns 
along zones other than [100]; it does not affect the spot 

i .  
Fig. 15. Transmission-electron-microscope images revealing the 

concentric cone structure of synthetic ehrysotile fibres. 

positions, only the intensity distribution. If the stacking 
within the sectors is well ordered, the c* streaks break 
up into spots. 

6. Conical wrappings 

6.1. Model of a conical scroll (Amelinckx, Luyten, 
Krekels, Van Tendeloa & Van Landuyt, 1992; Luyten et 
al., 1993) 

Conically wound fibres of serpentine are most 
exceptional in natural samples but are very common 
in most synthetic samples of chrysotile. They had been 
recognized as early as 1957 (Zussman et al., 1957) but 
their complex microstructures are still not fully under- 
stood, despite the pioneering work of Yada (Yada, 
1967, 1971, 1979; Yada & fishi, 1977). Although non- 
scroll conical fibres would be theoretically possible in 
some cases, most fibres consist of conical scrolls (like a 
paper cone), as suggested by their morphology (Fig. 
15). 

In a conical scroll, each sheet is rotated with respect 
to the adjacent one about an axis parallel to the local 
normal to the sheet over a constant angle 0, which is 
directly related to the semi-apex angle ~b 0 of the cone by 
the relation (Fig. 16) 

0 = 2rr sin 4)o, (7) 

which is strictly speaking only valid if the sheet 
thickness A is zero. 

S $ 

2xr 

(a) (b) 

2~=OR ; r -Rs in)o ;  O=[~-(x=2xsinOo 

s S 

(c) 
Fig. 16. Illustration of notations used in the derivation of the angular 

relation between 4'0 and 0. (a) Geometry of the cone. (b) Unrolled 
cone. (c) Relation between turns of an Archimedean spiral (solid 
line) and circle with the same length (dotted line). 
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Table 1. Special values of  the semi-apex angle 4)0 
and of the corresponding 0 values 4)0 = arcsin(k/12) 

(k = integer) 

k 0 (°) $o (°) No = 1/sin~o 

1 30 4.78 12 
2 60 9.59 6 
3 90 14.47 4 
4 120 19.47 3 
5 150 24.62 2.4 
6 180 30 2 

rotations are coupled in the way described above, i.e. 
the hk0 node configuration has to rotate over an angle 0 
for a complete turn of the tangent planes (Fig. 7a). 

We introduce the azimuth angle ~p characterizing the 
orientation of the normal to the tangent planes. The 
orientation of the hk0 node configuration within the 
tangent plane is characterized by the angle .X- An 
increment in azimuth d~p causes a change dx of the 
orientation of the hk0 node configuration. The two 
increments are coupled by the relation 

If the sheet thickness A << r (Fig. 16), which is often 
the case except perhaps for the first turns of a thick- 
sheet scroll, (7) is a good approximation, which 
amounts to assuming that the length of a turn of an 
Archimedean spiral is equal to the length of a circle with 
a radius equal to the average radius of curvature of the 
spiral turn (Fig. 16c). 

Cone angles tend to adopt certain values for which 
the successive sheets have a large density of coinciding 
lattice sites. As a result of the pseudo-hexagonal 
symmetry of the bilayers, parallel fit occurs for angles 
that are multiples of 60°; twin-type low-energy inter- 
faces are formed for odd multiples of 30 ° . The 
corresponding cone angles 4) o are thus given by 

4) o = arcsin(k/12) (k = integer). (8) 

The relevant values of 4)0 for different values of k are 
given in Table 1. 

A continuum model of a conical scroll is represented 
in Fig. 2(b) and images of such scrolls are reproduced in 
Fig. 15. 

It is geometrically possible to form a concentric 
conical set of cones (in particular for 0 - 120 °) but so 
far there is no evidence for such a stacking mode. 

6.2. Diffraction space of conical wrappings 

A detailed interpretation of the diffraction pattern of 
conical tubules requires a knowledge of the geometry of 
diffraction space of such wrappings. We will show that 
the reciprocal-lattice nodes become either circles or 
spherical spirals. The diffraction pattern is then the 
central projection onto the photographic plate of the 
configuration of intersection points of these curves with 
the Ewald sphere (plane!). 

We assume the cone to have macroscopic rotation 
symmetry about its axis. The family of c planes is 
tangent to the cone everywhere and the corresponding 
00l nodes are situated on the normals to these tangent 
planes. The nodes of type hk0 are situated in the plane 
tangent to the cone. This is shown schematically in Fig. 
17 for one position of the tangent planes. Diffraction 
space is generated by rotating the configuration of c 
planes and nodes about the cone axis, whilst simulta- 
neously rotating the configuration of hk0 nodes about an 
axis normal to the c plane through the origin. The two 

dx = (O/2rr) d~p = sin 4)0 d@. (9) 

This relation is based on the assumption that the 
orientation change of the hk0 configuration, which 
amounts to 0 for an azimuth change of 2zr, built up 
linearly as ~p increases, i.e. as the tangent plane rotates. 
The two angles 4~0 and 0 are represented in Fig. 7 for a 
node point P(hk0); it describes a path situated on a 
sphere with radius ghko. Integrating (9) and choosing the 
integration constants such that X = 0 for ~p = ~P0, one 
has 

X = (0/2zr)(~p - ~P0) = 0 P -  ~P0) sin 4~0. (10) 

.s~ ~ .  
,; ' I \ ' , 

, ' , ' I '5  

t y 

Fig. 17. Diffraction space of conically wound fibre. The set of layer 
planes (001) is tangent everywhere to a cone with semi-apex angle 
4)0. The layers are represented by their hexagonal unit mesh; they 
rotate about the local c axis as one describes a path around the axis. 
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Use is made of spherical coordinates (Tz, ct) to 
describe the locus of P by means of an equation of the 
type FOp, c t )=  0. In the spherical triangle PQR, one 
has 

sin ct = sin X cos q~0. (11) 

Expressing X in terms of 7z as in (10), one obtains the 
locus in the desired form 

sinct = cos 4~0 sin[(sin 4~0)(7z - 7z0)]. (12) 

Assuming that the reciprocal-lattice nodes hk0 form a 
hexagonal configuration on a circle with radius ghkO, one 
can describe the loci of this hexagon of nodes as 

sinct,, -- cos~b0 sin[(sinq~0)(Tz- 7z0) + n x 60 °] (13) 

with n = 0, 1 . . . . .  5. This equation represents in general 
six spherical spirals, one for each node (i. e. for each n 
value) in spherical coordinates. However, as w e  shall 
see, symmetry may reduce this number. 

The usual coordinate transformation allows one to 
formulate the equation in terms of Cartesian coordi- 
nate s: 

x = ghkoCOSlpCOSOt; y = ghkOSinTzcosot; 
(14) 

Z = ghkO sin or. 

6.3. The OOl loci 

The loci described by the 001 nodes are found by the 
rotation of the end points of vectors with lengths lc*, 
perpendicular to the ' local '  c planes, i.e. enclosing an 
angle of +(zr/2 - q~0) or - (z r /2  - 4~0) with the rotation 
axis (Fig. 17). For each l, such a rotation describes a 
circle with equation ot - q~0 on the sphere with radius 
lc*. This set of circles in parallel planes is situated on a 
rather flat double cone with semi-apex angle rr/2 - ~b 0. 
The intersections with the Ewald plane under quasi- 
normal incidence give rise to two sequences of 
equidistant sharp reflections intersecting in the common 
origin under an angle 24¢ and shifted longitudinally as a 
result of refraction. This angle 2~b' is related to the angle 

2~b 0 but it depends on the inclination of the incident 
beam. The semi-apex angle 4¢, as observed with the 
incident beam forming an angle y with the normal to the 
cone axis, is related to the semi-apex angle 4~0 at normal 
incidence by the relation 

sin 4¢ = sin q~0/cos y. (15) 

The observed angle ~b' is thus always larger than the real 
angle q~0. 

When the electron beam is exactly parallel to the cone 
axis and if  the latter is normal to the surfaces, no c 
reflections are observed unless the angle ~b o is very 
small and the foil thin so as to produce a sufficiently 
wide circular band of relrods. In such a case, a circular 
locus is observed in the [100] zone. For technical 
reasons, such a diffraction pattern could unfortunately 
only be obtained from a cylindrical polygonized fibre 
(Fig. 4). The circles then exhibit reinforcements 
corresponding to the facets; the latter disappear for a 
circular cylinder. 

When the axis of the cone is inclined with respect to 
the foil plane, slightly elliptic loci can be produced. The 
circular locus is now split up into two concentric ellipse- 
shaped loci, which have a common diameter parallel to 
the tilt axis of the cone. This common diameter is the 
long symmetry axis for the inner ellipse and the short 
symmetry axis for the outer ellipse. The splitting 
increases linearly with increasing value of l; also, the 
intensity of the loci becomes weaker with increasing 1. 

6.4. Geometrical properties of spherical spirals 

6.4.1. General aspects. The shape of one spherical 
spiral, i.e. of the locus of one reciprocal-lattice node, is 
shown in a stereoview in Fig. 18. 

Along a section with the Ewald plane 7z = 0 parallel 
to the cone axis (i. e. for perpendicular incidence of the 
electron beam), the angular separation of two succes- 
sive intersection points, i.e. between successive turns, 
is given by 

Fig. 18. Spherical spiral representing in 
a stereoscopic view the locus in 
diffraction space of a reciprocal- 
lattice node for a conically wound 
fibre. The locus is closed (0 = 60°). 
The curve is tangent to two small 
circles at a polar distance 4~0 around 
the north and south poles. 
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/lot = arcsin[cos $o sin(2rr sin $0)] 

= arcsin[cos ~b 0 sin 0]. 
(16) 

If ~b 0 is small enough, cos q~0 -~ 1 and one obtains 

/lot --- 2rr sin ~o = 0 (17) 

(~b o in rad). The density of intersection points decreases 
with increasing ~b o and with increasing 0. 

The extrema, which are equal to 4-cos q~o, occur for 

~p sin ~o = kzr + zr/2. (18) 

(k = integer). At these points, the spherical spiral is 
tangent in the circles ot = +(zr/2 - ~b0). 

6.4.2. Closure condition. A closed locus will be 
formed if after an integer number of turns p the 
corresponding ot values are equal and the sine is in the 
same phase, i.e. one must have (for n = 0; ~P0 = 0) 

sin ~b 0 = (ap + 2pn) sin q~o 4- 2qTr 

(p  = integer; q = integer), 

i.e. for 

2prr sin ~b o = +2qzr (19) 

or, taking (7) into account, for 

0 = (2q/p)n or ~b 0 = arcsin(q/p). (20) 

0 must thus be rationally related to rr or ~o must have 
a rational sine. In particular, all 'special '  cone angles 
give rise to commensurate closed loci, as is clear from 
Table 1. 

6.4.3. Period: number of turns of spiral. The period 
of the complete curve is equal to the period of sin ot 
(12). The period of the sine being 2zr, one must have 

sin[(sin ~b0)~p + 2n] = sin[(sin ~b0)~]. (21) 

This corresponds to a period of 2rr/sin ~b 0 in azimuth, as 
can be seen by writing 

sin[(sin ~bo)~ + 2rr] = sin[(~ + 2zr/sin ~o) sin ~b0]. (22) 

Since one turn corresponds to a change in ~ of 2n', the 
number of turns must be 

No = 1/sin~b0 = 2n'/0, (23) 

which is only an integer number provided ~b0= 
arcsin(1/N) (N = integer), which turns out to be the 
case for all 'special '  values of ~b 0 (see Table 1). 

6.4.4. Extrema of the spherical spiral. The expres- 
sion dot /d~ is a measure of the angle/~ under which the 
tangent to the spherical spiral intersects the equator. 
From (12), we have 

dot /d~ = ½ sin 2~b o cos[(sin ~bo)ap] 

x { 1 - cos 2 ~b o sinZ[(sin ~bo)~]} -x/2. (24) 

At the intersection point of the curve with the equator 
( o t = 0 ,  a p = 0 ) ,  one finds tanS=½sin2~b o, i.e. 
tan 3 = ~b o for small ~b o. As the spiral approaches the 

poles, this angle decreases monotonously and it 
becomes zero at the extrema, which are reached for 
cos[(sin~o)~P] = 0, i.e. for ~psinq~o = k n + T r / 2 ;  the 
first one occurs for 

~p = rr/(2 sin ~0) (25) 

(choosing ~0 = 0 for ot = 0). 
Whenever the diffraction pattern exhibits evidence 

that the Ewald plane is tangent to the curve (as in Fig. 
5), the pattern must have been made under an 
appreciable inclination angle y. 

6.4.5. Intersection points with the equator. The 
intersection points with the equator are given by 
sin a = 0 or by 

= kzr/sin ~b o (26) 

(k = integer) with ~ < 2n'. More specifically, for 
closed curves, a = 0; ~z = kN~r (mod 2rr). If N is 
even, for instance N = 2m (m > 1, integer), then 
lp = 2kmn" (mod2zr). The only acceptable value is 
k = 0 corresponding to Vz = 0. The only intersection 
point is a double point of the curve in the origin of the 
azimuth. If N is odd, for instance N -- 2m + 1 (m > 1), 
then ~ = ( 2 m +  1)krr (mod2rr).  We now have two 
different solutions, k = 0 leading to ~ = 0 and k = 1 
leading to Vz = n" (mod 2n'). The two intersection points 
are diametrically opposed and are single points of the 
c u r v e .  

These features are visible in Fig. 19, which 
represents loci for the remarkable values of q~0 and 0 
(0 = 30, 60, 90, 120, 180 °) corresponding respectively 
to the number of turns N = 12, 6, 4, 3, 2. 

Since each turn is at most intersected twice by a 
plane, the maximum number of intersection points with 
an Ewald plane is 2N. This number can be smaller 
owing to the presence of double points. 

6.4.6. Symmetry of spirals. The point symmetry of 
the spiral depends on the parity of N O . The curves with 
N O even belong to the point group mm2, the binary axis 
passes through the intersection point with the equator, 
which is a double point. The plane containing the 
extrema is a mirror plane through the axis: ap= 
zr/(2sin~0 ), which coincides with ~p = 0 if No is 
even. The second mirror plane is perpendicular to the 
fibre axis. There is no centre of symmetry. 

The curves with N O odd are centrosymmetric; they 
belong to the point group 2/m, where the twofold axis 
passes again through the origin (~  = 0, ot = 0). The 
plane containing a double point is still a mirror plane. 
These properties are suggested by Fig. 19; they can be 
derived analytically from (12). 

The plane through the extrema can be represented as 
~p = rr/(2 sin ~bo). It is clear that the substitution of ~p by 
[n'/(2 sin ~bo) ] - ~ and by [rr/(2 sin tbo) ] + ~p leads to the 
same value of sin ot, demonstrating the presence of a 
mirror plane through the fibre axis. The graphs of Fig. 
19 are made as viewed along this mirror plane. 
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We note that the substitution ~p---> ap + (sr/sin4b0), 
where st/sin 4bo corresponds to half a period, leads to the 
opposite sign for sin or. The conclusions to be drawn 
from this depend on the parity of 1/sin4b o = N o. If 
N O - 2 k ,  this substitution does not change ~ (mod 2st) 
and the conclusion is that for the same ~ the points +or 
and -c t  belong to the curve, which means that there is a 
mirror plane perpendicular to the axis. If No = 2k -t- 1, 
the substitution replaces ~ by ~ + sr (mod2sr) and 
changes ct into -or. The conclusion now is that the 
centre of the sphere is an inversion centre for the curve. 
Since there is already a mirror plane through the axis, 
the addition of a centre of symmetry implies the 
presence of a twofold axis through the centre of the 
sphere and perpendicular to the mirror plane, but no 
second mirror. 

6.4.7. Closure after a number of turns. As mentioned 
above, the condition for closure of the spherical spiral is 

l / s in  ~b o =p/q, (27) 

where p and q are mutually prime integers. 

In the cases considered as yet (Fig. 19), p = No 
(integer, equal to the number of turns) and q -  1. 
The curve contains N O full turns and intersects the 
equator twice, once going northwards and once going 
southwards. For N O even, these two intersection 
points coincide in a double point; for N O odd, both 
points are single and situated at diametrically opposed 
points. 

Closed curves, which pass more than twice through 
the equator, can occur if 1/sin ~b 0 is not an integer. In 
the case where q ~ 1, the period of sin ot is 

2zc(plq) = 2zr(N + e) (28) 

(e < 1). It is a non-integral number of turns along the 
sphere and as a result does not coincide with the 
period of ~ (=  2st). The curve will only close if 
after a 'superperiod'  both sin ot (mod 2sr[p/q]) and 

(mod2sr) repeat. This occurs for the smallest 
common multiple of 2sr(p/q) and 2st, i.e. for 2srp. 
The curve thus closes after p turns. The number of 
intersection points with the equator is then 2q. 
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Fig. 19. Schematic view along a symmetry plane of the loci corresponding to various values of $0 leading to integer values of 1/sin (Po = No. If 

No is even (2, 4, 6, 12), the curve belongs to the point group mm2; i f N  o is odd, it belongs to the point group 2/m. 
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If p and q are incommensurate, closed spirals are 
not formed and the spherical band between 
¢ z = - ( z r / 2 - ¢ o  ) and o t = + ( r r / 2 - ¢ o )  is filled 
completely. 

A complex multiturn spherical spiral is shown in a 
cylindrical representation (ap, sin or) in Fig. 20, illustrat- 
ing the particular case 

1 / s i n ¢ o = p / q = 1 7 / 5 =  3 + ( 2 / 5 )  ( N = 3 ; e = 2 / 5 ) .  

The actual pattern contains five sinusoids extending 
over a total interval in ap of 34rr [5 x 6 4 zr ], correspond- 
ing to 17 turns of the spiral. To read this diagram, it 
should be realized that in order to shorten the length of 
the graph the spiral has been compressed along the ap 
axis. In particular, the same numbers n and n' 
(n = 1, 2, 3, 4, 5) represent the same point and ensure 
furthermore that the curve continues with the correct 
phase. The compression is achieved by shifting the 
graph backwards (i.e. towards the origin) over 
A ap=6rr  after each period of the sinusoid 
(2rr/sin ¢0 = 64 rr). 

The number of intersection points with the equator is 
clearly ten (= 2q), five intersections occur moving 
southwards and five moving northwards; the separation 
of successive intersection points is 4rr (= 2rr~). The 
actual spatial shape is obtained by projecting the curves 
on the sphere as shown in Fig. 8. 

6.4.8. Intersection points with the equator, N o 
fractional. If the electron beam is incident parallel to 
the fibre axis, the Ewald plane is the equator plane. The 
intersection points with this plane are given by ot = 0, 
i.e. by 

sin[(sin ¢0)ap] = 0 (29) 

and alternatively by 

ap = kzr/ sin ¢0 = (p/q)/kzr = (N + r/q)kzr (30) 

(n, p, N, k integers). 

If N is even, for instance N = 2m (m = integer), 

ap = 2kmzr + kzr(r/q) (mod 2zr). (31) 

The spacing between zeros is thus 7r(r/q), the origin of 
the sequence being ap = 0 (k = 0). The number of zeros 
is 2rc/zr(r/q) = 2q/r; if q/r is an integer, their number 
is finite. 

If N = odd, for instance N = 2m + 1 (m = integer), 

ap = k(2m + 1)zr + kzr(r/q) (mod 2zr). (32) 

ap = 0 (k = 0) and ap = zr (k = 1) are the origins of two 
sequences both with a repeat 2zr(r/q). This leads to two 
interleaving sequences. If q/r is an integer, the two 
sequences form together a sequence with a spacing 
7r(r/q). 

In actual fact, ap(p/q)kTr will lead to a finite number 
of intersection points i f p /q  can be developed in a finite 
continued fraction such as p /q  = n I + 1/(n 2 + l/n3) 
where the nj are integers. 

6.4.9. Single spiral spot pattern under normal 
incidence. At normal incidence (y = 0), the Ewald 
plane can be represented by ap = ape + krr (k = 
integer). We assume sin ap 0 = 1~No (No = i n t e g e r =  
number of turns). The number of intersection points 
is twice the number of turns: 2No. The latitudes of these 
intersection points can be computed from 

sinot k = (1 - 1/N2) 1/2 sin[(ap e + kzr)/No] (33) 

with k = 0, 1 . . . . .  2N 0 - 1. Odd and even values of k 
lead to intersection points left and right, respectively, of 
the projected fibre axis. Synlmetric patterns are 
obtained for two cases, apE = 0 and ape = zr/2. For 
apE = 0, one has 

sinct k = (1 - 1/N2) 1/2 sin(krc/No). (34) 

The points with k = 0 and k = N O are situated on the 
equator, ct = 0. Extrema are reached for k = No~2 and 
k = 3N0/2 (for N O even). 

sin(~ 

% " . 

-cos % 

p=17 ; q=5 ; N=3 ; E=-2/5 ; period= 34x ; turns=17 (p) 

Fig. 20. 'Compressed' view of a complex multiturn spherical spiral with 1 / sin ¢o = 17/5, represented in cylindrical projection (sin ~ ver sus  ~p). 
The five sinusoids represent in fact a single sinusoid obtained by connecting the points n' to n after each period. The total period of the spiral is 
34zr. 
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In the specific case N O = 6, the points corresponding 
to k = (0, 6) lead to ot = 0, and the pairs of k values 
(0, 6), (2, 4), (8, 10), (5, 1) and (11, 7) lead to double 
points, whereas k -- 3 and k = 9 lead to single points 
(the extrema). The pattern has a line of symmetry 
perpendicular to the fibre axis (point group m) (Fig. 
21a). In the case N O = 3, all spots are single and the 
symmetry is described by the planar point group mm2 
(Fig. 21 c). 

For ~E = rr/2, the spot positions are given by 

sinc~ k = (1 - 1/N2) 1/2 sin[(2k + 1)n'/2No]. (35) 

For No = 6 (even), all points are single and the pattern 
belongs to the planar point group mm2 (Fig. 21b). For 
No = 3 (odd), half  of the points are double, the two 
remaining ones are single. The pattern belongs to the 
planar point group I (Fig. 21d). 

The spot patterns for intermediate positions of the 
Ewald plane 0 < 7t e < n'/2 result if  the double spots are 
assumed to split into two spots situated asymmetrically, 
one on each side of the double-spot position. Simulta- 
neously, the single spots move away from the closest 
double-spot position as indicated by arrows in Figs. 
21(a), (d). 
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Fig. 21. Spot patterns produced by the intersection of a single 
spherical spiral with two different azimuthal positions of the Ewald 
plane under normal incidence (y = 0). (a) N O = 6, ~Pe = 0; (b) 
N O = 6, V,'E = zr/2; (c) N O = 3, ~Pe = 0; (d) N O = 3; ~e = rr/2. The 
arrows indicate how the spots move on tilting (a) and (b) from 
~Pe = 0 to ~Pe = rr/2 or (d) and (e) from lp E = rr/2 to Vie = 0. 

6.5. Diffuse scattering 

6.5.1. General considerations. The discussion of 
diffuse-intensity streaks associated with conical fibres 
is an extension of the discussion for cylindrically 
symmetric fibres (Zhang et al.,  1993). In particular, 
the c* directions are no longer confined to a plane 
normal to the fibre axis but are now situated on a double 
cone of revolution with its apex in the origin, with semi- 
apex angle 7r/2 - ¢0 and with a rotation axis parallel to 
the fibre axis. Sharp 001 reflections are produced as 
intersections of the Ewald plane with circles with radii 
r l = lc* cos ¢, situated on this double cone (Fig. 22), 
i.e. with c~ = n'/2 - @0- 

6.5.2. Cylindrical case. The diffuse intensity dis- 
tribution in diffraction space is conveniently described 
by circular rings or coronae associated with the 
reflections other than 00l (Fig. 23). The presence of 
disorder in the stacking of the c layers, which is very 
often present, does not affect the 00l reflections but it 
causes hkl reflections to become streaked along e*. This 
streak is perpendicular to the vector gh~ and situated in 
the (hk0)* plane. It is thus tangent to the circular locus. 
As a consequence of the rotation symmetry, the 
intensity distribution in the (hk0)* plane is represented 
by a ring-shaped area, sharply limited inwards by the 
circle with radius ghk0 and fading out in the outward 
direction. This ring or corona is also obtained by the 
rotation of a streak tangent to the circle. This leaves the 
inner circle of the ring sharp but the streak sweeps the 
outer part, which gradually fades out, owing to the 
increase in circumference of the outer circles (Fig. 23). 

The construction of the diffuse intensity coronae in 
the cylindrical case illustrated in Fig. 24(a) can be 
formulated in a way that allows us to generalize it to the 
conical case (Amelinckx et al., 1994, 1995; Liu & 
Cowley, 1994a, b; Baker, 1989; Tibbets, 1984): 
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Fig. 22. Relationship between the true angle ~o = 90 ° -¢0 between 
001 rows under normal incidence (y=0)  and the angle 

= 90 ° - 4)' measured on the diffraction pattern: 
sin 4)0 = sin 4)' cos y. 
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(a) consider the sphere of all hkO reflections, i.e. with 
radius ghk0 and with its centre at the origin of diffraction 
space (Fig. 24b); 

(b) consider the locus of a particular hkO reflection; 
this is a small circle (C) on this sphere situated in a 
plane normal to the fibre axis; 

(c) consider the cylinder based on this circle (C) with 
generators parallel to the fibre axis; 

(d) consider a point A on (C); 
(e) draw the tangent p lane/7  to this cylinder, in A; 
( f )  the locus of all c* streaks is a plane 2? normal to 

the fibre axis; 
(g) consider the intersection (/) of the tangent plane/7 

and the plane ~7 brought through A. This produces the 
streak l in A; it is tangent to (C); 

(h) repeat this operation in all points of the locus (C); 
(i) the result is the ring-shaped corona of diffuse 

intensity mentioned above; 
(j) intersecting these coronae with the Ewald 

plane produces the streaks in the diffraction pattern 
and in particular shows why they are sharply limited 
at the diffraction spot and fade out outwards and 
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why they are parallel to the row of sharp 00l 
reflections. 

6.5.3. Conical case. We now generalize this proce- 
dure to the case of conical fibres (Fig. 24c) by 
considering which changes have to be made to the 
different steps: 

(a) remains unchanged; 
(b) the locus of a particular reflection of this kind is a 

spherical spiral (S) on the sphere, as discussed above; 
(c) consider the cylindrical surface based on (S) with 

generators parallel to the fibre axis; 
(d) consider a point A on (S); 
(e) draw the tangent p lane/7  to the cylinder in A; 
( f )  the locus of all c* directions is a double cone with 

semi-apex angle z r / 2 -  4)0 and with a rotation axis 
parallel to the fibre axis; 

(g) consider the two intersections of the tangent plane 
/7 in A with the double cone ~7, the latter being shifted 
so as to bring the apex in A. These intersections 1~ and l z 
are two streaks associated with the point A; they are 
parallel to the directions of the linear arrays of sharp 00l 
spots; 

(h) repeat the operation in all points of the locus (S); 
(i) the result is a complex surface, represented 

schematically in Fig. 24(a). 
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Fig. 23. Diffraction space due to cylindrically wrapped layers; diffuse 
scattering. (a) The layer planes are tangent everywhere to a 
cylinder. Two orientations of the layer planes (00.1)h or (002)0 are 
shown. (b), (c), (d) The loci of the first-order reflections {1010} [or 
(110)o and (010)o] are shown. They are circles sharply limited 
inwards but fading outwards. The loci of the (00.2)h [(00_2)0 ] 
reflections are sharp circles. (b) Fibre axis is parallel to [l120]h 
([010]o). (C) Fibre axis is parallel to [10i0]h ([100]o). (d) Chiral 
fibres; the chiral angle is 17. 
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Fig. 24. (a) Locus in diffraction space described by a reciprocal-lattice 

node (except 001 nodes). The locus is spherical spiral limiting 
inwards a V-shaped diffuse belt, leading to diffuse streaks. This 
surface is a generalization of the diffuse coronae represented in Fig. 
23. (b) Construction of diffuse coronae in the cylindrical case. (c) 
Construction of the diffuse surface in the conical case. 
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(j) the intersections of this surface with Ewald's 
plane produce the V-shaped streak configurations 
associated with all spots except for 001. The streaks 
are parallel to the rows of sharp 001 spots; they form a 
V-shaped arrangement, the point of the V coinciding 
with an intersection point of the conical spiral with the 
Ewald plane (Fig. 9e). 

In order to help visualize the diffuse intensity surface, 
we consider the hypothetical case where the curve (S) 
remains a circle but a pair of intersecting lines 11 and l 2 
is nevertheless present in a point of (S). A surface is 
now generated in the way described above by rotating 
the set of two intersecting lines I 1 and l 2, which are 
assumed to be symmetrically inclined with respect to the 
rotation axis. The resulting surface of revolution is a 
hyperboloid of one sheet, which is clearly a ruled 
surface. The actual surface of interest can now be 
approximated by cutting this hyperboloid and deforming 
its guiding circle into a spherical spiral (S). Note that as 
~0 ~ 0 the actual surface, as well as its approximation, 
reduces to the diffuse corona normal to the fibre axis, 
considered in the cylindrical case. 

Locally, it is a good approximation to consider the V 
surface as part of a hyperboloid of one sheet with the 
double cone of c* directions as the asymptotic cone. It 
then becomes clear why certain streaks look like 
branches of a hyperbola; if the surface is intersected 
by a plane (the Ewald plane!) that is not tangent to the 
surface, the intersection curve is a hyperbola with the 
two c* directions as asymptotes. If the intersecting plane 
is tangent to this ruled surface, it intersects along two 
straight lines forming an angle 2¢' as for instance in 
Fig. 25. 

is formed from a single bilayered lamella. If the conical 
sheet has a thickness rc and has rotation symmetry with 
multiplicity m about the local [001] directions, the 
superperiod will be Nsc with 

N s = (360/O)(r/m). (36) 

It has long been suspected that cylindrical fibres may 
form scrolls with scroll steps of one or more bilayers 
(Jagodinski & Kunz, 1954a). The observations of Yada 
(1971) demonstrated that cylindrical fibres with scrolls 
of up to at least four layers are common in some natural 
samples. It is therefore reasonable to assume that 
multiple sheets also occur in conically wound fibres, as 
is suggested by their morphology with thick growth 
steps (Figs. 15 and 26). In these cases, the superperiod 
may become larger than that corresponding to the cone 
angle. It should be noted that, for a detailed interpreta- 
tion, the true cone angle ~b 0 has to be known; in inclined 
specimens, the observed angle ~b' is larger than the true 
cone angle ~0 as shown by (15). Unfortunately, the 
inclination angle V is usually unknown and cannot be 
deduced easily from geometrical features of the 
diffraction pattern without assuming a value for ~b 0. 
We will show how, nevertheless, a number of observa- 
tions can be interpreted. 

In Fig. 5, the streaks parallel to c* clearly show main 
reinforcements corresponding to a period 4c and much 
weaker spots roughly midway between the main spots. 

6.6. Superperiods 

As already mentioned above, successive sheets are 
rotated by 0 about the local normal to the cone surface. 
If 0 is an integer fraction of 360 °, the same orientation 
will repeat after N = 360/0 turns provided the sheet has 
no rotational symmetry. A microstructure with a period 
Nc will result, producing the superperiod along [001] 
(Figs. 5, 10 and 27). The microstructure rotates as a 
whole by 0 on considering points on a closed path along 
the periphery of the cone, i.e. surrounding the cone 
axis, but it remains parallel to itself in points along a 
straight path through the apex. Since high-resolution 
images reveal the (001) planes where they are tangential 
to the incident electron beam, i.e. along lines through 
the apex, the superperiod of this microstructure is 
visible in such images. 

If 360/0 is p/q ,  where p and q are mutually prime, 
the sequence repeats only after p turns but it is 
modulated with a period qc. If 0 is incommensurate 
with 360 °, the microstructure is not periodic and quasi- 
continuous streaks along the two c* directions will be 
formed. These simple relations are only valid if the cone 

Fig. 25. Diffraction pattern of synthetic conically wound chrysotile 
fibre. Outward oriented V-shaped streaks are attached to all 
diffraction spots (except for the sharp 001 spots). The cone angle 
is 20o - 19-20 °. Note the presence of hyperbola-shaped streaks as 
indicated by arrows. 
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The two c* rows enclose an angle of about 20 °, i .e.  
~0 "" 10°, which is within the experimental error 
compatible with ~0 = 9.58° or 0 = 60 ° and N O = 6. 
The pattern of intense reflections is consistent with the 
intersection patterns of spirals with N O = 6, leading to 
12 intersection points for each of the lower-frequency 
circles. The azimuth ~e  must be closer to ~e = 0 than 
to ~E = ~r/2 (Fig. 21). The beam incidence is thereby 
assumed to be close to normal (cos Y --~ 1). From (36), a 
fourfold period can be obtained when 1: = 2 and m = 3. 
This is equivalent to assuming that the conical sheet 
consists of  two bilayers and that the resulting stacking 
has threefold symmetry. This is the case for instance for 
the 2T polytype. However, it is worth noting that, 
strictly speaking, this stacking cannot be maintained as 
a consequence of the wrapping of the sheet and 
translation faults will occur. This does not affect the 
period since this is due to orientational variants. The 
weak spots also form an equidistant sequence with a 

Fig. 26. High-resolution images along the fibre axis of a single-layer 
and of a double-layer cylindrical chrysotile scroll. 

period ic~ * but which is shifted with respect to the 
sequence of stronger spots over roughly ~ c*. The reason 
is that the two sequences originate from two different 
nearby basic spots and are superimposed by chance 
owing to the particular specimen orientation with 
respect to the Ewald plane. Fig. 27 shows in the inset 
the high-resolution image of a fourfold period. 

Also, the high-resolution image of Fig. 27 can 
consistently be interpreted on the basis of our model. 
The angle between the two sets of  001 fringes is 22 °, 
i .e.  00 = 11 °. The closest (but smaller) special value is 
again 9.59 ° , suggesting that the specimen was tilted 
over an angle Y = 45° [from (15)]. The observed sixfold 
period is obtained if  z = 2 and m = 2, which means that 
the sheet is considered to be a two bilayer orthorhombic 
polytype. 

Note that the growth layers observed on the surface 
have a thickness equal to twice the six-layer period. 
This 12-fold growth period is consistent with a crystal- 
lographic period of 6c. 

In Fig. 10, the angle between the two 001 rows is 
again 2~b' _~ 20 ° and thus compatible with N O = 6. This 
is also consistent with the presence of six spots on the 
low-frequency circles. Their configuration is a some- 

! 

1Or 

Fig. 27. (a) Lattice image of a synthetic conical chrysotile fibre. Note 
the sixfold superperiod along c, which is consistent with the apex 
angle of 20o -~ 20 °. (b) Magnified part of (a) exhibiting a sixfold 
superperiod. (c) Lattice fringes in chrysotile exhibiting a period of 
4c. The period is best observed under grazing incidence parallel to 
the fringes. 
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what tilted version of the configuration represented in 
Fig. 21(a) (~Pe = 0, N O = 6). The superperiod deduced 
from the fine structure of the streaks is 6c; it can be 
generated in several ways for which r = m [in (33)], 
i.e. N s -- N o. Since m is limited to 1, 2, 3, 6, this is also 
the case for t. Note the strong preference for No -- 6. 

6.7. Sets o f  spherical spirals 

6.7.1. Cylindrical projection; extended scheme 
representation. As motioned in §5.1, a convenient way 
to represent the spatial spherical spiral in a plane is to 
make use of a Mercator-type cylindrical projection in 
which a point on the sphere Ps is projected on a point Pc 
on a cylinder that touches the sphere along the equator 
(Fig. 8). Since the azimuth in general exceeds 360 ° , the 
cylinder is assumed to be a scroll. The curve is periodic 
in many cases of interest; it is therefore sufficient to 
represent one period za~pr = 2rr/sinq~ 0, which is in 
general a multiple of 2zr. The scroll is unrolled to obtain 
the planar representation. Along the vertical direction, 
we plot y - R sin c~, where R is the radius of the sphere 
(R = [fgloi01), and, along the horizontal direction, we 
plot x -- R~.  The resulting curve is a sinusoid with its 
origin at apo oscillating between + cos 4) o and - cos q~o, 
the extrema corresponding to lp = lko + zr/(2 sin 4)0) and 
~P = 1#0- [zr/(2sin4~)]. In Fig. 28, we have chosen 

apo = 0 for the sinusoid shown with the thicker line, and 
which will be considered separately. This planar curve 
allows one to visualize the properties of the spatial 
curve. It is clear that the intersection point with the 
equator must be a centre of symmetry on the spherical 
surface, i.e. ct.(~) = -c t . ( -~p) ,  as is also evident from 
(12). 

The lines 7t = constant  through the extrema are lines 
of symmetry, i.e. 

o~,[+(Jr/2 sin 4)0) + 7*] = ~,[+(Jr /2  sin 4)0) - ~]. (37) 

This property can also be verified directly with (12). 
The intersection points of the curve with itself, i.e. the 
double points, can be found by looking for symme- 
trically situated points (with respect to an extremum) 
for which the difference in azimuth is an integer 
number of 2m Intersection points occur at the same 
azimuth, i.e. in the same radial planes as the extrema. 
Points are indicated by the same numbers as in Fig. 28, 
to the left. 

The same type of graph allows us to represent in a 
simple manner the six spirals generated by the six node 
points of the first hexagon (the 1010-type reflections) for 
which Ax = Jr/3 (Fig. 28). The similar sinusoids are 
shifted along the ~p axis over equal intervals 
A ~  = Jr/(3 sin4>0). This follows directly from (12) by 
noting that sin ~ can be rewritten 

l sin ~ (b) (c) (a) (d) (b) Ewa ld  l ines 
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Fig. 28. (Top) Extended cylindrical projection (sin ct versus  ~k) of the six identical closed spherical spirals corresponding to the six nodes of the 
first hexagon. The cone angle is 2 %  = 19 °. The six sinusoids are phase shifted by 2zr in the azimuth ~p. The period of each sinusoid is 12zr in ~p 
(2zr/sin¢0 = 12zr). The periodic vertical segments represent cylindrical projections of a single Ewald plane for the case y = 0 (normal 
incidence). The full segments represent the Ewald plane through the double points; the dotted segments refer to the perpendicular plane 
(A~p = 90°). The corresponding diffraction spots of the first hexagon are represented left and right, respectively. (Bottom) Reduced scheme; 
the Ewald planes (a), (b) lead to the left spot pattern; (c), (d) to the right pattern. The 'sense of intersection' ('northwards' or 'southwards') has 
only a relative meaning. 
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sin ot = cos ~b 0 sin[ap sin q~0 + zr/3] 

= cos 4~0 sin[(~ + rr/3 sin ~b) sin 4~0]. (38) 

For 4~0 =9 .58° ,  A~p=2rr  and, for q~0 =4 .78° ,  
A ~  = 4rr, whereas the periods are respectively 12rr 
and 24zr. 

For the loci corresponding to the nodes of the second 
hexagon (i.e. for reflections of the type 1120), a similar 
construction is possible: the radius of the sphere is 
different (it is now R = Igxl~01). Since the horizontal and 
vertical directions of the graph of Fig. 28 are scaled by 
the same factor R, the same curves can be used. 
However, since the two 'hexagons' of spots differ in 
orientation by 30 °, the X value in (13) has to be replaced 
by X + 300) • This would be reflected in the set of curves 
by a relative shift z~p = zr/(6 sin ~b0). 

The construction that leads to the spot positions, i.e. 
the intersection of the spatial curve by the Ewald plane, 
in the case of normal incidence, is now represented as 
the intersection by a periodic set of lines (Ewald lines!) 
parallel to the vertical axis, the period being Jr. 

When the Ewald plane is parallel to the fibre axis 
and passes through a maximum, it passes also through 
such double points. Such a section is shown in Fig. 
28 where the periodic arrangement of full-line 
segments represents in fact a single Ewald plane, 
which intersects the cylindrical scroll after each half 
turn, i.e. along lines with a difference in azimuth 
A~p = kzr (k = integer). The arrangement of inter- 
section points of the considered sinusoid with this 
particular plane ( ~ - - 0 )  is shown in the left circle: 
five points are double points; two points are single 
points: 12 points in total. When the Ewald plane is 
still parallel to the fibre axis but is now perpendicular 
to the previous one, i.e. its azimuth is now 

= kzr + 7r/2, this is represented by the dotted 
segments in Fig. 28. All 12 intersection points with 
the considered sinusoid are now single and the section 
is represented on the right of Fig. 28. This illustrates 
that the diffraction pattern is very sensitive to the 
azimuth, i.e. to the orientation of the fibre along its 
long axis and not only to the direction of the incident 
beam. Two extreme cases were shown here. The left 
one has only a horizontal line of symmetry whereas 
the right one has mm2 planar symmetry. 

For intermediate azimuthal orientations of the Ewald 
plane, the pattern will lose the specific symmetries 
exhibited here. Moreover, if the beam incidence is not 
normal, additional deformation of the pattern will 
o c c u r .  

6.7.2. High-symmetry cases. 
6.7.2.1. Spot positions of the first hexagon (reflec- 

tions of the type 1010). From the geometrical construc- 
tion in Fig. 28, we concluded that, in the specific case 
shown there (No = 6), the set of intersection points with 
the Ewald plane for normal incidence (), = 0) is the 

same whether a single spiral or a set of six spirals 
corresponding to the six reciprocal-lattice nodes was 
considered. This greatly simplifies diffraction space and 
hence leads to simple diffraction patterns. Unfortu- 
nately, this simplicity is not a general property of the 
sets of spirals. We shall show that it is only true for 
No = 6 and if y = 0 such that otk, ~ = Xe.~.~. 

The property follows from purely geometrical 
considerations based on the generation process of the 
spirals. The angular difference in XE between two 
adjacent nodesj andj  + 1 (mod 6) in the plane H of Fig. 
7(a) is rr/3. One node is thus transformed into the 
second one by a rotation over zr/3 about the a2 axis. 
Such a rotation is also produced if one follows one node 
(i. e. the same spiral) after a rotation of the plane H over 
2rr about the a 1 axis (Fig. 7a). The rotation over 2rr 
about the a I axis coupled with the rotation about the a 2 
axis is thus a symmetry operation for the spiral. We 
conclude that the six node points are always situated on 
the same spiral, as illustrated in Fig. 18 by the hexagon 
of points. 

Analytically, this follows from (13). The latitudes 
otk,~ = Xe,k.n (for y = 0) are given by 

sin oq,.~ = cos 4~0 sin[(ap + krc)/6 + n rr/3], (39) 

where cos4~0 =0 .986  for N O = 6 ;  k = i n t e g e r ,  
n = 0, 1 . . . . .  5. This can be rewritten as 

sin ctk. ~ -- 0.986 sin{[(~ + 2nrr) + kJr]/6}. (40) 

The sequence of etk,,, values generated for n ~ 0 is thus 
the same as that for n - 0 for any value of the ~p, i.e. the 
two spirals are identical since adding 2nzr to ~p does not 
change the sequence. All six spirals generated by the six 
nodes thus coincide but the k values belonging to the 
given point of the locus corresponding to the node n 
differ by 2n from the k value of the same point 
considered as belonging to the locus n - 0. 

Simplifications also arise in the cases N O = 3 and 
N O = 2. For N o = 3, the six node points generate two 
different loci. The node points with n even generate one 
locus and the ones with n odd the other locus. This 
follows from similar geometrical considerations as 
given above, but it can be shown analytically. One has 

sin Otk.,, = 0.942 sin[0 p + krr)/3 + n rr/3]. (41) 

If n = 2m (m - integer), this can be rewritten as 

sin Otk, n = 0.942 sin{[(ff + 2mrr) + krr]/3}, (42) 

which shows that the sequence of points is the same as 
that for n = 0. If n = 2m + 1, one can write 

sinctk. . = 0.942 sin({[~p + (2m + 1)zr] + kzr}/3). (43) 

This represents the same sequence as for n = 0 but 
rotated over zr. The nodes n = j ,  j + 2 and j + 4  
(j  = 0, 1) thus generate the same spiral. 

Finally, for N O = 2, the six node points generate 
three different loci. One has 
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sin Olk, n = 0.866 sin[0# + kTr) /2 + n rr/3]. (44) 

For n = 3m, this can be rewritten as 

sin t~k. n = 0.866 sin{[(~ + 2mTr) + kzr]/2} (45) 

The curve generated by the node n - 3 is then the same 
as that generated by the node n = 0. For n --- 3m -4- 1, 
one obtains 

sin o~k,,, = 0.866 sin{[Tt + (2m 4- 2)rr + krr]/2}, (46) 

which shows that the loci generated by n = j  and 
n = j + 3 are the same and moreover successive nodes 
generate curves differing by 2/3zr in orientation. There 
are thus three different curves generated by the six 
nodes. 

If  N O is a multiple of six, reciprocal space is still a 
single spiral (see e.g. N O = 12 in Fig. 19d) for all six 
nodes of a hexagon. As a result of the coupled rotations 
A X = (1/12)A~p, it is clear that ~# has to increase by 
A ~  = 4zr to cause a change A X = zr/3. This coupled 
rotation corresponding to A ~  = 4rr is thus a symmetry 
operation for the spiral. This means that successive 
reciprocal-lattice nodes of the same hexagon along the 
spiral are separated by two full turns, whereas this was a 
single turn in the case N O - 6. This can be concluded 
from (13) by noting that 

s in[(Tt-  lp0)/12 + nrc/3] - s in{[0P + 4 r m ) -  ap0]/12}. 

(47) 

The latitude of the node 0 for azimuth ~ is the same as 
that of node n for ~p -- 4n'n. 

Conversely, one might ask the question under what 
conditions the six spirals coincide, either all or only a 
fraction of them. 

From (13), we find in the high-symmetry cases 
(1 / s in  4~0 - No) (No -- integer) 

sinct = (1 - 1/N2) V2 s i n [ 0 P -  ~Po)/No +nr r /3 ] .  (48) 

This expression must now be independent of the 
considered node, i.e. of n. This will be the case if  

[0# - aP0)/N0] + (mr/3) = (~p - apo)/N o (mod 2zr) 

(49) 

or if  

nNoOr/3 ) - 2kzr (k - integer) (50) 

or if  nNo = 6k. The product nN o will only be a multiple 
of 6 for all integer values of n (0, 1 . . . . .  5) if  No = 6. In 
this case, the six reciprocal-lattice nodes thus generate 
only a single spiral. 

I f N  0 = 3, not all n values lead to a sixfold symmetry; 
only even n values are now satisfied and hence only half  
of the nodes, for instance n = j ,  j + 2  and j + 4  
( j  = 1, 2) are on the same spiral. 

If N O - 2, only n values that are a multiple of 3 lead 
to multiples of 6 for 6k. This means that now only one 

Table 2. Point groups of  single spherical spirals and of  
a set of  spherical spirals 

Single s p i r a l  Complete set 
No = 2 mm2 3 2/m 
N O = 3 2/m 2/m 2/m 2/m 
N o = 6 mm2 mm2 

The planar point group of the diffraction pattern can obviously be 
obtained as the section by the Ewald plane of the spatial point group of 
the set of loci. 

third of the nodes (i.e. two nodes) are on the same 
spiral. For instance, n - - j  and j + 3 (.j = 1, 2, 3). Since 
6 has no other factors than 6, 3 and 2, there are no other 
solutions. 

How are the spirals related when more than one is 
present? 

For N O = 3, the condition nNo(rC/3) = 2krr 
(k = integer) will be satisfied for n even (=  2k). 
However, for n odd ( = 2 k +  1), one finds 
nNo(rr/3) = ( 2 k +  1)zr. This means that the spiral 
corresponding to odd values of n differs in azimuth by 
7r from the spiral corresponding to even values of n. The 
two spirals are thus related by a binary symmetry axis 
parallel to the fibre axis. 

For N O = 2, the difference in azimuth nNo(Jr/3 ) will 
be 2kzr only if  n = 3k. If  n - 3k + 1, this expression 
becomes nNo(rr/3) = 2kzr + (2zr/3) and for n = 3k - 1 
it becomes 2 k z r -  (2zr/3). This clearly means that the 
three spirals, each corresponding to those reciprocal 
node points, differ by 120 ° in azimuth. The three spirals 
are thus related by a ternary symmetry axis parallel to 
the fibre axis. 

For the high-symmetry cases (N O - 2 ,  3, 6), the 
spatial point group of the diffraction space, 
generated by the hk0 nodes, can now be given 
(see Table 2). 

6.7.2.2. Spot positions of  the second hexagon (i.e. 
reflections of  the type 1120). The set of loci generated 
by the second hexagon of hk0 nodes is situated on the 
sphere with radius gn~o = 31/2 gl0iO- Within plane H,  
the configuration of the second hexagon nodes is rotated 
(Fig. 7a) over 30 ° in X about a 2. According to (9), one 
has A X = sin ~b o A~p. For N O = 6, the change in azimuth 
of the set of loci is A ~  = (1/sin q~0)Ax = 6(n'/6) -- n'. 
One concludes that the set of loci produced by the 
second hexagon is related to the set of loci produced by 
the first hexagon by a similarity operation with a scale 
factor gll~O/gloio = 31/2 followed by a rotation of n 
about the fibre axis. Analogous conclusions hold for 
different N O values; for N O = 3, the difference in 
azimuth is 3 (z r /6 )=  zr/2 and, for No = 2, this is 
2(zr/6) -- zr/3. 

In the cylindrical case and for y -  0, the c~ values 
of the spots owing to the second hexagon differ by 
30 ° from those of the first hexagon and this is 
independent of the orientation of the fibre about its 
axis. 
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In the conical case, this is no longer true. The 
°t,,,k = X,,,k spot positions for the second hexagon in the 
case No = 6 for ape = 0 and ape = rr/2 (y = 0) are 
shown in Fig. 29. These angular positions are derived 
from the relations 

for { ape = 0 sin ctk, 0 = 0.986 sin[(k + 1)zr/6] 
n - - 0  

(51) 

for ~f ape = zr/2 
L n - - 0  

sin Otk, 0 = 0.986 sin[(2k + 3)zr/12]. 

(52) 

The k values of the different positions are indicated in 
Fig. 29. 
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Fig. 29. Schematic representation of the computed spot positions for 
the high-symmetry situations. (a) No = 6, ~Pe = 0. The positions 
are shown for the first and second hexagon of nodes. The six nodes 
produce a single spherical spiral. Single and double points are 
present. (b) N o = 6, ~pe = ]r/2. The spot positions of the first and 
second hexagons are radially aligned. The full and dotted lines 
suggest the spirals that produce the spot positions. All positions are 
single. 

The difference in orientation by rr of the two shells of 
positions is evident from Fig. 29(a) (ape = 0). The 
resulting configuration is essentially different from that 
in the cylindrical case. The configuration is even more 
strikingly different in the case ape = zr/2. The angular 
positions of the spots are now the same for the two 
shells even though the azimuthal orientation of the two 
spirals differs by rr.This orientation difference becomes 
evident when connecting the positions by lines suggest- 
ing a schematic representation of the spirals of which 
they are the intersection points. This was done in Fig. 
29(b) for the two shells. 

In the high-symmetry case No = 6 considered here, 
the six nodes of a shell generate a single spiral, as 
shown above. Figs. 29(a) and (b) can thus be compared 
with diffraction patterns made under the appropriate 
conditions, i.e. for y = 0, ape = 0 or ap e = rr/2. 

The cases N o = 3  and N 0 = 2  can be discussed 
similarly. 

The large number of independent parameters, (1)o, F, 
ape, determining the diffraction pattern make a 
systematic study of the diffraction effects tedious. 
Observations made under the exact symmetry condi- 
tions described above have not been made system- 
atically so far but the available diffraction patterns can 
consistently be interpreted in terms of the described 
model. 

In Fig. 10, the first and second 'hexagons'  of spots 
(i. e. spots hk0 with h + k = 2 and h + k = 4) differ by 
roughly 30 ° in agreement with Fig. 29(a); we conclude 
that the condition ape -~ 0 was approximately satisfied. 
In Fig. 25, on the other hand, the spots in the first and 
second hexagons are roughly radially aligned, suggest- 
ing that ape is close to rr/2. 

The orientation relation between the first and 
second hexagons of spots is important because it 
provides a means to determine the azimuth of the 
Ewald plane from information present in the diffrac- 
tion pattern. 

6.7.3. Intersection points; spot positions; general 
case. The algorithm determining the intersection points 
of the loci with the Ewald sphere (plane!) and hence 
the positions of the diffraction spots in that plane is as 
follows. The equations of the loci (13) are of the form 
F l(ap, or; q~0, n) = 0, where q~0 is a parameter deter- 
mined by the cone angle of the fibre and n an integer 
corresponding to the considered reciprocal-lattice 
node. The equation for the Ewald plane [(4), (5)] is 
of the form F2(ap, ot ;ap0,ey) = 0 ,  where y is a 
parameter determined by the inclination of the Ewald 
plane (Fig. 14). The solution of the set of non-linear 
equations F 1 = 0, F 2 = 0 leads to pairs (ap,,k, c~,.k) for 
a given set of parameters q~0, ap0,e and y. The index k 
refers to the different intersection points of the same 
spherical spiral with a given n value. The number of k 
values depends on the number of turns of the spherical 
spiral, which is essentially determined by ~b 0 (see 
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Table 1). What we need for a comparison with the 
observations are the angular positions in the Ewald 
plane/zn, k corresponding to the ct,,,k; they are given by 
/z,, k = arcsin(sinct,,k/COSF) [from (6)]. For normal 
incidence (F = 0), /z,,,k = ot,,,k. 

Instead of solving the system of equations F 1 = 0, 
F z = 0, numerically one obtains a better insight into the 
geometry of the diffraction spots by solving the system 
graphically. One plots F l(oq~pl; ~b0, n) for different 
values of ~b 0 and for n = 0, 1 . . . . .  6. If the unrolled 
cylindrical reference system as described above is used, 
sin a versus ~z is plotted and the spherical spirals are 
represented as sinusoids, the curves corresponding to 
different n values are shifted over rr/(3 sin~b0). This 
graph (Fig. 28) allows us to discuss the symmetry of the 
pattern for certain special orientations of the Ewald 
plane. We consider first the same orientations as for a 
single sinusoid F = 0, i.e. normal incidence and 
azimuths ~z = 0 and ap = n'/2. For these cases, the 
Ewald planes in the graph are lines parallel to the 
vertical axis. Owing to the scroll nature of the 
projection cylinder, a single Ewald plane is imaged by 
a periodic sequence of parallel lines. The full 'Ewald 
lines' in Fig. 28, top, represent the Ewald plane through 
the double points of the spherical spiral, whereas the 
dotted lines represent the Ewald plane perpendicular to 
the latter. The resulting configuration of intersection 
points, which determines the position of the diffraction 
spots, are shown left and right in the upper part of Fig. 
28. They turn out to be the same positions already 
deduced for a single spiral, i.e. a single sinusoid. 

6.7.4. Reduced scheme representation. This repre- 
sentation can be simplified and in particular the multiple 
representation of the Ewald plane can be reduced to two 
lines, by replacing the extended scheme by a reduced 
one, similar to the procedure used in discussing one- 
dimensional Brillouin zones. This reduction is obtained 
by dividing the chart of Fig. 28 into vertical strips 2rr 
wide and subsequently superposing all these strips in 
one basic interval, for instance ( -n ' ,  +n'). The periodic 
sequences of lines representing the Ewald plane are then 
reduced to two lines in the interval ( ' J r ,  +Jr) and 
differing n" in azimuth, which are the two intersections 
of the same plane with the projection cylinder. All ot 
values of intersection points are now found by 
intersecting the reduced scheme of curves by two lines 
as in the lower part of Fig. 28. 

It is worth noting that in most cases (i. e. for the most 
frequently occurring ~b 0 cases) the six sinusoids of the 
extended scheme reduce to a single set of curved 
segments in the reduced scheme, at least for the 
commensurate cases (2~b 0 ~ 10°; 2~b 0 ~ 20°). This 
allows one to understand why in such cases the actual 
diffraction pattern contains a surprisingly small number 
of spots. 

In the reduced scheme, double points of the spherical 
spiral, i.e. points where the spiral intersects itself, 

actually become intersection points of curve segments. 
The Ewald plane, represented by the two lines (a) and 
(b) in Fig. 28 (bottom), passes through the double points 
of the curves; it is clearly a symmetry plane of the 
complete configuration. The spots produced in the DP 
are those represented in Fig. 28 to the left (top). If the 
Ewald plane is the one represented by the lines (c) and 
(d) in Fig. 28 (bottom), the produced spots are 
represented in Fig. 28 to the right (top). The symmetry 
is completely lost if the Ewald plane occupies an 
intermediate position, the diffraction pattern then 
becomes as shown for instance in Fig. 10. 

So far, the Ewald plane was assumed to be parallel to 
the fibre axis and use was made of plots of sin ot versus 
Vz. For a general orientation (~0,e, F) of the Ewald 
plane, it is more convenient to plot ~ versus ~ for the 
diffraction loci in a reduced scheme as well as for the 
Ewald-plane representation. For such a plot, the 
sinusoid becomes a 'sawtooth'  with rounded corners. 
Superposing the two graphs leads to Fig. 30 for the case 
24~0-----19 ° and to Fig. 31 for the case 2~b 0 - - 9  ° . 
Different inclination angles F -- 0, 10 . . . . .  90 ° are 
represented. The ot and ~p of the intersection points 
can now be read directly from the graphs for different 
inclinations of the Ewald plane. In these graphs, the 
azimuth of the Ewald plane ~P0,e was assumed to 
coincide with ~0. If this is not the case, the appropriate 
value of lp0, e has to be used, resulting in a parallel shift 
of the net of Ewald planes along the ap axis. 

In particular, these graphs allow one to understand 
why the configuration of spots is in general complicated 
and asymmetric. Also, it shows how curved diffuse 
spots can result (as in Fig. 5), where the Ewald plane 
touches the spherical spirals as well as the diffuse V 
surface. Comparing Fig. 30 with Fig. 31 shows that the 
number of spots increases with decreasing 4~0. 

7. Conical graphite fibres 

In Amelinckx et al. (1992) and Luyten et al. (1993), 
[00.1]-zone diffraction patterns of conically wound 
graphite needles were discussed and analysed based 
on the approximation that the composite texture 
pattern is the superposition of the diffraction patterns 
of planar [00.1] sheets that are rotated with respect to 
the adjacent one over the angle /3 = 2 7 r -  0 (in the 
present notation). The observed azimuth spot positions 
~0 were found to be well represented by the relation 
~Pk,n = k/~ + n × 60 ° (n = 0, 1, 2, 3, 4, 5), where k is an 
integer and /~ is in the range /3 = 22-24 °, the cone 
angle <P0 being in all cases close to 70 °. Note that 
/3 = 2n(1 - sin ~P0) (*), i.e. ~ = 22-23 °. The present 
analysis should in particular apply to this case. The 
diffraction spot positions in the (0001) zone are 
obtained as a planar section of the diffraction space 
loci by a plane (the Ewald plane) perpendicular to the 
cone axis. For one node, the positions are thus given 
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by the zeros of %,, i.e. 
making use of (*), by 

~Pk = k rr/[1 - (fl/2rr)] _~ krr(1 +/~/2zr) 

since/~/2zr << 1 

or, finally, by 

¢~ = kJr + k ~/2. 

by g / =  k(zr/sin 4>0) or, 

(53) 

(54) 

The spots in the sequence originating in a given hkO spot 
are thus equally spaced by /~, in accordance with the 
analyses in Amelinckx et al. (1992) and Luyten et al. 
(1993). To realise this, it is convenient to separate the g/k 
into twO classes of basic spots corresponding with even 
(e) and odd (o) values of k: 

k -- 2m, gr e = 2mzr + m/~ 
(55) 

k = 2m + 1, gr o = 2mzr + m/~ + (Jr +/~/2), 

from which it is clear that the second sequence has the 
same structure as the first but is shifted in azimuth over 
a constant angle rr +/~/2.  

The locus of a single node thus oscillates between two 
small circles of the sphere defined by Otmax = +20 ° and 
--20 °. The locus is a spherical spiral between these two 
circles. The other nodes corresponding to the same 
interplanar spacing describe similar loci on the same 
sphere. The successive loci are shifted in azimuth by 
60 °. The spirals intersect the Ewald plane under a rather 

small angle, thus leading to spots that are smeared out 
along the locus, as observed in Amelinckx et al. (1992) 
and Luyten et al. (1993). 

In terms of the considerations of §6.4.7, which are 
applicable here, one finds for this particular case 
1/sin4>0 = 1.06 and hence N - -  1; s - -0 .06 .  The 
sequence of spots has a spacing A ~  = 2rre (since 
N = odd). One finds 2rre = 21.6 °, in agreement with 
the spacing deduced empirically from the observed 
diffraction pattern in Amelinckx et al. (1992). 

8. Discussion and conclusions 

The electron diffraction patterns produced by different 
microstructures of natural and synthetic chryostiles 
can consistently be explained by considering the loci, 
generated by the reciprocal-lattice nodes, as a 
consequence of the variation in orientation of the 
local lattice. In particular, the diffraction effects 
produced by conically wound fibres are explained in 
detail. It is shown that the geometry of the 
microstructure causes each reciprocal-lattice node to 
describe a spherical spiral. With a cylindrical 
projection method, the configuration of diffraction 
spots can be discussed graphically as the intersection 
points of the spatial configuration of spherical spirals 
with the Ewald plane. Excellent agreement with the 
experimental patterns is found. From lattice fringes 
and diffraction patterns, superperiods along the local c 

c¢ ,~ = 1 0  ° (~o = 9 . 5 9  ° 

19o°-~ol ~ I 

~' = 9 0  ° 

-(90 o - 

Fig. 30. Reduced scheme (t~ versus ~) of the cylindrical projection of Fig. 29 with expanded scale along ~p(2~0 = 19°). Superposed are the 
cylindrical projections of the Ewald plane in the same coordinate system for different g values. The figure shows the special case where 
%.E = 0. If %,e 7 ~ 0, the set of curves has to be shifted over %.e along the ~ axis, with respect to the reduced scheme of the loci. 
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°r'l• 
'y =I  0 ° = o 

"~ = 0  ° 

~o= 4.78 ° 

Fig. 31. Reduced scheme of the cylindrical projection (a versus ~z) of the six spherical spirals due to nodes of the first hexagon for a cone angle 
2~b 0 _~ 9 °. The cylindrical projections of Ewald planes for different inclination angles are superposed on the reduced scheme of loci using the 
same reference system. In this graph, %.e = 0; if %.e # 0, the set of curves has to be shifted along the ~ axis, relative to the loci. The 
intersection points represent the spherical coordinates (a, ~p) of the diffraction spots. 

direction are found to be consistent with the wrapping 
up of multilayered sheets. 

In our derivation of the geometrical loci in diffraction 
space, we neglected the fact that the local unit cells may 
be different in shape (at constant volume) in successive 
layers of an ideal scroll. This would result from the 
systematic relative tangential shifts of successive layers, 
by a constant amount, owing to the increase in length of 
successive turns of the scroll (2zr × layer thickness!). 
For an ideal achiral circular cylinder, this effect can 
readily be taken into account, as was done by Devouard 
(1995) and Devouard & Baronet (1996); it leads to a 
fine structure of the diffuse coronae mentioned in 
§5.2.1. This fine structure may provide an alternative 
interpretation for the reinforcements in streaks in the 
diffraction patterns in Figs. 11 and 12, assuming that 
they have scroll character. 

A similar effect should occur in ideal conical scrolls 
where, apart from considered rotations between succes- 
sive layers, parallel translations may also occur, in 
particular in high-symmetry cases. This problem 
remains to be solved. 

In our models, we implicitly assumed random 
rather than systematic relative shifts; the good 
correspondence with the observations seems to 
suggest that this assumption is not unreasonable. 
Formulated in dislocation language, this means that 
the partial edge dislocations, parallel to the fibre 

axis, which  make up the lattice curvature, are 
rather more randomly distributed around some 
average separation along the successive turns than 
systematically arranged, for instance in dislocation 
walls. 

One of us (BD) wishes to thank Professor G. Van 
Tendeloo for giving him the opportunity to pursue these 
observations on serpentines in the EMAT Laboratory 
(Antwerp), and Dr L. Nistor for her friendly help with 
operating the JEOL 4000 and Philips CM-20 micro- 
scopes in the same laboratory. 
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